本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
本书将基础经济学、高频数据的经验基础和数学工具以及模型联系在一起,为读者在试图理解和设计成功的交易算法时面对的各种各样的问题,提供足够广阔的视野。本书分为三个部分。第一部分给出了交易市场的基本概念、理论以及经验事实。第1章介绍了电子交易市场、市场参与者和订单簿。第2章概述了金融微观结构市场模型。第3章和第4章对市场进行了实证和统计分析。第二部分也就是第5章介绍了交易算法分析相关的数学工具。第三部分深入研究算法交易策略的建模。第6-8章涉及最优执行策略,即代理商必须在预先指定的窗口上清算或收购大头寸,使用市价单或限价单进行持续交易。第9章涉及基于交易量日程的执行算法,为希望跟踪市场整体交易量的投资者制定战略。第10章展示了做市商如何在限价订单簿中选择限价单的发布位置。考虑了包括对库存风险的
图论作为数学的一个重要分支,已广泛应用于计算机科学、信息科学、生命科学、管理科学等领域。平面图是图论的主体内容。由于诸如四色猜想、唯一4-色平面图猜想和九色猜想等的研究对象均为极大平面图,故从1879年至今,学者们从各种角度展开了对极大平面图的研究。本书系统地介绍极大平面图的结构、构造及着色等相关理论,内容包括:基于放电变换的极大平面图乃至一般平面图的结构特征研究;四色猜想的计算机证明;极大平面图的几种构造方法;极大平面图生成运算系统;极大平面图色多项式递推公式;唯一4-色极大平面图猜想的研究;极大平面图中Kempe 变换与σ-特征图理论等。
本书系统介绍了随机传染病动力学模型建立、分析以及数值分析,以期为传染病防控提供科学依据。全书共8章:第1章详细介绍了传染病动力学仓室建模方法和基本再生数的计算、随机模型构建及研究进展等;第2章给出了随机传染病模型研究需要的基础知识,包括概率空间、随机过程、It*微积分、随机微分方程及其稳定性、Markov半群、不变测度以及Fokker-Planck方程等;第3,4,5章分别研究了人口流动、干预策略、媒体报道等因素对随机传染病模型动力学行为的影响机制;第6章给出了猫免疫缺陷病毒模型的随机分析,特别是考虑了季节变化对疾病传播的影响;第7章研究了具有均值回归过程的随机传染病模型动力学行为;第8章给出了随机传染病动力学模型研究的基本算法及其相应的R程序代码。
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,后介绍了历届中国数学奥林匹克竞赛试题。 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
本书以作者团队进行的农业、林业、草业、生态等学科试验及获得的调查数据作为主要研究对象,全面阐述数量研究方法在这些学科中应用的基本特征和学科特点,并总结归纳数量研究方法的灵活性、普适性和独特性;书中相关案例可作为农学、林学、草学、生态学及生物学应用的基本模式。
本书面向地理学问题,讲述了常用数学方法的基本原理和应用实例。全书分为四篇,共21 章。第一篇是地理数学方法导论,讲述基本概念和知识,属于基础内容;第二篇讲述回归分析与相关分析,包括线性回归、非线性回归、Logistic 回归、虚拟变量回归以及基于回归分析的模型选择等方法;第三篇讲述多元统计分析,包括主成分分析、因子分析和聚类分析等方法;第四篇讲述时空过程分析,包括时(空)间序列分析、Markov 链、R/S 分析等方法。本书作为北京大学研究生地理数学方法教材试用多年,其特点是简明、详细,便于自学者使用。在讲解原理的过程中穿插了大量实例,读者可以通过实例解析了解有关方法的应用要领和分析思路。
本书提出了时间序列混合智能辨识、建模与预测的理论和方法。内容分四篇共16章。篇阐述了时间序列分析的重要性,从文献计量学的角度对时间序列的**国际研究进展进行了归纳总结,系统阐述了当前国内外主流时间序列辨识、建模与预测的计算策略和经典算法体系;第二篇介绍了铁路沿线风速混合智能辨识、建模与预测理论方法,包括基于特征提取的GMDH神经网络、长短期记忆深度网络、卷积门限循环单元网络、Boosting集成预测和Stacking集成预测模型;第三篇提供了智慧城市大气污染物浓度的特征分析方法及浓度时间序列建模与预测模型,包括点预测、区间预测、聚类混合预测和时空混合预测等理论;第四篇对金融股票价格时间序列进行特征提取与混合预测,包括贝叶斯统计预测模型、BP/Elman/RBF等神经网络预测模型、CNN/LSTM/BiLSTM等深度网络预测模型。本书提供
无
本书系统介绍传染病动力学的数学建模思想、典型研究方法和主要研究成果。主要内容涉及具有时滞、接种免疫、疾病复发、类年龄结构、空间扩散和非线性发生率的传染病动力学模型以及具有胞内时滞、CTL免疫反应、抗体免疫反应、游离病毒扩散、细胞感染年龄和非线性感染率的宿主体内HIV(HBV)感染动力学模型的建立和研究,也特别介绍有关艾滋病、乙肝和结核病等重要传染病在国内外的最新研究结果。本书重点介绍传染病动力学的数学建模方法、理论分析和数值模拟方法,内容丰富、方法实用,反映了当前传染病动力学在国内外的最新研究动态和作者的最新研究成果。通过阅读本书,既能使一般读者尽快地了解和掌握传染病动力学的建模思想和理论分析方法,又能将具有一定基础的读者尽快带到相关研究领域的前沿。
《*金融数学引论》是*金融数学入门及引论教材。首先,基于离散时间金融模型描述了*过程中一些基本概念:结合单时段金融模型、多时段二项式树模型,介绍*变量的条件数学期望及离散参数鞅等。由此,介绍资产定价基本定理及离散框架下期权的定价公式。其次,基于连续时间金融模型,《*金融数学引论》较系统介绍*分析中的一些基本内容。例如:介绍了连续时间鞅、布朗运动、伊藤积分、伊藤公式、*微分方程及其解的存在性、Dynkin公式、Feymann-Kac定理、Girsanov定理及鞅表示定理等。介绍了金融市场可达性和完备性的*刻画。在此基础上,介绍基本Black-Scholes模型的基本期权、奇异期权定价公式;进一步,介绍广义Black-Scholes模型的复杂欧式期权定价公式。在利用*停时介绍了美式期权定价之后,《*金融数学引论》后介绍精算学初步——破产论及其与金融数学的联系。
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的
本书讲述能量泛函正则化模型理论分析及应用。主要内容包括能量泛函正则化模型国内外发展现状,图像稀疏化基本理论,半二次型能量泛函正则化模型基本原理及应用,能量泛函正则化模型整体处理、分裂原理、对偶模型分裂原理、原始-对偶模型分裂原理及在图像恢复中的应用。
本书聚焦于问题的建模和利用计算机实现建模两个重点,同时广泛吸收了近二十年来管理科学和数量分析的原则。本版新书在保持并进一步强调应用性特色的同时,继续为读者论述了数量分析技术在各种组织决策环境中的应用方法和技巧,并展示了各种模型的技术方法,讨论了它们的假设条件和使用的局限性,并说明了这些技术在组织中的应用。 本书是一本有关运筹学、管理科学和数量分析的优秀教科书,自出版以来一直受到广大师生的欢迎,并被美国哈佛大学等名校采用,流行于全世界。 本书可作为本科生MBA、EMBA的管理科学、这量分析、决策模型类课程的教材。
本书系统介绍有关多尺度建模的基本问题,主要介绍其基本原理而非具体应用。前四章介绍有关多尺度建模的一些背景材料,包括基本的物理模型,例如,连续统力学、量子力学,还包括一些多尺度问题中常用的分析工具,例如,平均方法、齐次化方法、重正规化群法、匹配渐近法等,同时,还介绍了运用多尺度思想的经典数值方法。接下来介绍一些更前沿的内容:多物理模型的实例,即明确使用多物理渐近的分析模型,当宏观经验模型不足时,借助微观模型,使用数值方法来获取复杂系统的宏观行为规律,使用数值方法将宏观模型和微观模型结合起来,以便更好地解决局部奇点、亏量及其他问题;最后一部分主要介绍三类具体问题:带多尺度系数的微分方程、慢动力和快动力问题以及其他特殊问题。
本书作为一部论述生物数学思想的专著,尝试将生物数学思想从其内部打通,以生物数学思想的起源与形成为主线,通过透析生物数学思想演变的内在逻辑,窥觅到它的产生和发展是环环相扣的有机的统一体。本书首先对生物数学的思想体系进行整体梳理。然后把握生物数学思想产生和发展过程中各个阶段的关键点;选择具有代表性的种群动态数学模型的产生和发展过程作为突破口,并详细介绍这类生物数学模型在产生和发展过程中所经历的15种形态;详尽分析生物数学四大分支的起源与形成过程;选择生物数学思想演变过程中的5位代表人物进行个案分析;细致探析生物数学的社会化过程;给出生物数学思想未来发展方向的三点展望。*后,叙述中国生物数学的开拓过程。
作为针对20世纪自然科学形式逻辑基础进行逻辑审查的系列丛书,《两类相对论形式逻辑分析》汇集了著者杨本洛自2005年末起所撰写,主要涉及两类“相对论”数学基础问题的若干文章。与Maxwell的电磁场经典理论体系仍然崇尚“经验事实”基础,只因为理性认识和数学工具的历史局限性几乎必然隐含许多逻辑不当完全不同,两类“相对论”以及它们的数学工具——其主要代表是Riemann微分几何——只允许建立在“约定论”基础之上。然而,只要是“约定论”的,就逻辑地因为缺失“实体论”基础的支撑及其相应构造约束的限制,必然自始至终充满矛盾和悖谬,并造成Einstein以及许多现代微分几何研究者不可能真正读懂他们仅仅凭借主观意志创造出来的“约定——某个团体共同信念或意向”的反常;与此同时,诸如如何表现曲面上向量场梯度场之类的具体命题却至