《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书以通俗易懂的方式系统地介绍和阐述结构方程模型 (SEM) 的基本概念和统计原理,侧重结构方程模型的实际运用,介绍和示范各种常用结构方程模型,以及许多新近发展的模型,包括带分类条目的验证性因子分析 (CFA) 模型、双因子CFA模型、贝叶斯CFA 模型、缺失值多重插补 (MI)、潜变量合理值的估计和应用、调节中介效应模型、贝叶斯路径分析模型、带个体差异观察时间的潜发展模型 (LGM)、检验带分类变量的量表的测量不变性、纵向潜类别分析 (LLCA)、潜转换分析 (LTA)、带协变量和远端结局变量的潜发展混合模型 (GMM)、手动实施 BCH 方法和三步法混合模型建模、各种结构方程模型的蒙特卡罗模拟功效分析以及潜类别分析 (LCA) 模型的样本量估计。 本书采用国际著名 SEM 软件Mplus估计所有模型,使用真实数据演示各种模型估计,详细解读程序代码及输出结果。本书提供
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
《广义逆的理论与计算》研究了广义逆的新理论和计算方法,主要包括加权M-P广义逆,加权DRAZIN逆和核逆的扰动理论及广义逆的神经网络算法,其中介绍广义逆的神经网络算法的专著在国内比较少。 《广义逆的理论与计算》适合计算数学、应用数学的研究生和科研工作者参考阅读。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书是明朝三大数学名著之一,是我国数学史、珠算史上百科全书式的重要著作,内容几乎涉及现代初等数学、珠算的所有内容,故称为 大全 。 本书适合大中小学数学教师及广大数学爱好者阅读.
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《稳态Navier-Stokes方程的Liouville定理》介绍了Navier-Stokes方程,特别是定常Navier-Stokes方程的基础知识和**技巧,重点讨论了Liouville定理与定常Navier-Stokes方程解的分类问题。第1章将回顾一些基本的工具和技术,包括Stokes方程的基本解、Stokes估计、Bogovskii映射等;第2章对于三维稳态Navier-Stokes方程,将描述一些主要的进展,包括一些取决于速度、总压力或势函数的Liouville唯一性结果;第3章将从Navier-Stokes方程的衰减估计来研究;第4章将介绍一些二维Navier-Stokes方程的进展,包括Liouville定理、解的衰减或分类估计;*后,第5章将从不同区域或其他模型来讨论Liouville定理的一些进展。
本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的和应用参考。
本书以通俗易懂的方式系统地介绍和阐述结构方程模型 (SEM) 的基本概念和统计原理,侧重结构方程模型的实际运用,介绍和示范各种常用结构方程模型,以及许多新近发展的模型,包括带分类条目的验证性因子分析 (CFA) 模型、双因子CFA模型、贝叶斯CFA 模型、缺失值多重插补 (MI)、潜变量合理值的估计和应用、调节中介效应模型、贝叶斯路径分析模型、带个体差异观察时间的潜发展模型 (LGM)、检验带分类变量的量表的测量不变性、纵向潜类别分析 (LLCA)、潜转换分析 (LTA)、带协变量和远端结局变量的潜发展混合模型 (GMM)、手动实施 BCH 方法和三步法混合模型建模、各种结构方程模型的蒙特卡罗模拟功效分析以及潜类别分析 (LCA) 模型的样本量估计。 本书采用国际著名 SEM 软件Mplus估计所有模型,使用真实数据演示各种模型估计,详细解读程序代码及输出结果。本书提
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。