本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
lanczos方法是20世纪计算数学方向最有影响的方法之一,并且已经在工程中得到了广泛应用. 《lanczos方法:演变与应用》兼顾了lanczos方法的理论演变和工程中的实际应用,其内容分为两部分:部分阐述了方法的演变,并提供了具体算法;第二部分讨论了工业中的实际应用,包括常用的模态分析、复特征值分析、频率响应分析以及线性系统问题的求解.对于应用数学和工业工程专业的研究人员,以及工程计算领域的工程师,《lanczos方法:演变与应用》是一本很有价值的参考书.
《累积法理论》在介绍数理统计的基本概念、参数估计理论、二乘估计和联立方程式的数量分析等内容的有关理论知识的基础上,系统地提出累积法估计理论,即建立了一种新的估计一般线性回归模型中未知参数的参数估计方法,并推广其应用。 其主要涉及:普通累积和的概念及其统计特征,普通累积法及其估计理论(包括普通累积法估计与二乘估计、普通累积法估计法与工具变量法等知识的介绍),一元线性回归模型中普通累积法估计与二乘估计,多元线性回归模型中普通累积法估计与二乘估计,多级普通累积法的估计法和普通累积法估计法在联立方程组模型参数估计方面的推广等内容。
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答, 部分题目还给出了多种解法. 内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有一定数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有一定数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了一定数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书系统阐述了数值分析的基本概念和理论,内容包括:数值计算的误差,解线性方程组的直接法和迭代法,线性方程组的二乘解,矩阵特征值问题,插值法,函数逼近,曲线拟合,数值积分,解非线性方程和方程组的数值方法。 本书适合高等院校信息与计算、数学、应用数学、计算机应用等专业的本科生作为教材,也可供工程技术人员参考。