该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。 该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
量子信息学是20世纪80年代以量子物理学为基础,融入计算机科学、经典信息论形成的新兴交叉学科,主要包括量子通信和量子计算两个分支。本书是关于量子计算机研究,分上、下两册出版。上册是关于量子计算机原理和物理实现,下册是关于量子纠错和容错量子计算。由李承祖和陈平形等编著的《量子计算机研究》为下册,内容包括经典纠错码理论、CSS量子纠错码、稳定子量子纠错码、无消相干子空问和无消相干子系统理论、容错量子计算、拓扑量子计算等。书后附录内容包括量子力学概要、量子纠错码的群论基础、群表示理论、李群和李代数。《量子计算机研究》兼有基础性和系统性特色,既包含学科主要基础理论,又系统介绍当前该领域前沿主要研究方向和动态。全书体系清晰、逻辑严谨、分析深入、推导详尽。既可作为高等院校的研究生教材或教学参考书
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。
《MSastran动力分析指南》介绍MSastran软件在动力学领域的基本理论和使用方法。内容包括动力学分析方法及Nastran基本功能介绍,模态分析,频率响应分析,瞬态响应分析,响应谱与随机响应分析,复特征值分析,使用超单元算法的正则模态分析,动力学建模选项,非线性正则模态,动力优化设计,试验一分析的相关性,动力学设计分析方法DDAM,噪声分析,非线性求解序列SOL 400、隐式非线性求解序列SOL 600、显式非线性求解序列SOL 700的基本理论、求解方法及其在动力学分析中的应用。《MSastran动力分析指南》配有详细的实例操作说明,所选实例均使用MSC Patran作为前后处理器来创建分析模型和进行分析结果评估。《MSastran动力分析指南》配套光盘中含有实例的相关源文件,以供学习之用。
Thiook is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of thiook, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.
《MSastran动力分析指南》介绍MSastran软件在动力学领域的基本理论和使用方法。内容包括动力学分析方法及Nastran基本功能介绍,模态分析,频率响应分析,瞬态响应分析,响应谱与随机响应分析,复特征值分析,使用超单元算法的正则模态分析,动力学建模选项,非线性正则模态,动力优化设计,试验一分析的相关性,动力学设计分析方法DDAM,噪声分析,非线性求解序列SOL 400、隐式非线性求解序列SOL 600、显式非线性求解序列SOL 700的基本理论、求解方法及其在动力学分析中的应用。《MSastran动力分析指南》配有详细的实例操作说明,所选实例均使用MSC Patran作为前后处理器来创建分析模型和进行分析结果评估。《MSastran动力分析指南》配套光盘中含有实例的相关源文件,以供学习之用。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科本科及研究生
本书以作者20多年潜心研究的成果为主线,结合外相关研究的前沿思想和成果,较系统地介绍光滑约束优化快速算法的理论构架、全局收敛性及收敛速度的分析论证,并对算法进行了大量的数值试验和分析。全书分为12章:—3章介绍相关基础知识及快速算法模型框架,第4—7章讨论一般优化和极大极小优化的序列二次规划算法,第8—10章论述序列线性方程组算法,1章研究互补约束优化的序列二次规划算法和序列线性方程组算法,2章论述序列二次约束二次规划算法。 本书可作为运筹学、计算数学、管理科学、工程技术等专业的研究生教学或辅导用书,亦可作为相关领域的科研及工程技术人员的参考用书。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《当代科学前沿论丛:科学计算中的蒙特卡罗策略》是一本非常的介绍蒙特卡罗方法教材,系统全面地介绍了蒙特卡罗方法的基本原理、序贯蒙特卡罗理论、行为中的序贯蒙特卡罗方法、Metropolis算法及其推广、Gibbs抽样、一般条件抽样等。此外,《当代科学前沿论丛:科学计算中的蒙特卡罗策略》还详细阐述了这些理论和方法在物理学、生物学和化学等领域的具体应用,并且还辅以大量的模拟研究结果及相关问题,便于教师组织教学和学生进行学习。《当代科学前沿论丛:科学计算中的蒙特卡罗策略》可作为统计学、生物遗传学、物理学、化学、教育心理学、社会科学和计算机科学等专业研究生的教学参考书,也可供相关专业的研究生、教师、统计工作者以及从事或者对蒙特卡罗算法研究感兴趣的科研人员参考。《当代科学前沿论丛:科学计算中的蒙特卡罗策略》
本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
本书全面、系统地介绍了计算复杂性理论的基本内容与各种NPC问题、NP难问题等复杂问题的计算机求解方法。前四章分别简要介绍了线性规划、多面体理论、网络规划与动态规划等预备知识。第五至九章具体介绍了计算复杂性理论。包括复杂性的定义与分类,证明一个问题为P类或NPC类的基本方法,NPC记理论在分析、求解问题中的应用与近似算法的性能度量等。第十至十六章则主要以整数规划为框架,详细论述求解NPC及NP难问题各种不同形式的算法与近似算法。 本书可作为信息与计算科学、应用数学、计算机、管理科学等专业的研究生教材或本科生的选修课教材,也可供有关的科研人员参考。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
本书系统地介绍了粗糙集理论的基本内容与方法,力图概括国内外*成果。主要内容有:粗糙集的基本概念,粗糙计算方法,粗糙集的代数性质与粗糙逻辑,粗糙集的各种推广模型,粗糙集与其他处理不确定或不问题理论的联系以及不完备信息系统下的粗糙集方法。本书可作为计算机科学、应用数学、自动控制、信息科学和管理工程等专业的高年级学生及研究生的教材,也可作为研究粗糙集理论与方法的科技人员的参考书。