《数值线性代数(第2版)》由徐树方、高立和张平文编著,是为高等院校数学系计算数学专业本科生编写的数值代数课程的教材。全书共分八章,内容包括:绪论,求解线性方程组的Gauss消去法、平方根法、古典迭代法和共轭梯度法,线性方程组的敏度分析和消去法的舍人误差分析,求解线性小二乘问题的正交分解法,求解矩阵特征值问题的乘幂法、反幂法、Jacobi方法、二分法、分而治之法和QR方法。本书在选材上既注重基础性和实用性,又注重反映该学科的*进展;在内容的处理上,在介绍方法的同时,尽可能地阐明方法的设计思想和理论依据,并对有关的结论尽可能地给出严格而又简洁的数学证明;在叙述表达上,力求清晰易读,便于教学与自学。每章后配置了较丰富的练习题和上机习题,其目的是为学生提供足够的练习和实践的素材,以便学生复习、巩固和
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
数值分析是理工科各专业的一门专业基础课。全书由十章组成,主要内容包括:高次代数方程与超越方程数值解法,解线性方程组的直接法与迭代法,矩阵特征值与特征向量的数值解法,多项式插值与函数*逼近,数值积分与数值微分,常微分方程初值问题数值解,应用软件MATLAB和MATHEMATICA简介等。主要介绍计算机常用算法的基本思想、误差分析及算法的优缺点,以便于读者在应用时选取适当的算法。 本书在内容上既可以满足计算机专业和计算机信息与技术专业本科生的系统学习,也可以作为非计算机专业本科及研究生教材,同时可为广大科技工作者提供参考。