《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书以通俗易懂的方式系统地介绍和阐述结构方程模型 (SEM) 的基本概念和统计原理,侧重结构方程模型的实际运用,介绍和示范各种常用结构方程模型,以及许多新近发展的模型,包括带分类条目的验证性因子分析 (CFA) 模型、双因子CFA模型、贝叶斯CFA 模型、缺失值多重插补 (MI)、潜变量合理值的估计和应用、调节中介效应模型、贝叶斯路径分析模型、带个体差异观察时间的潜发展模型 (LGM)、检验带分类变量的量表的测量不变性、纵向潜类别分析 (LLCA)、潜转换分析 (LTA)、带协变量和远端结局变量的潜发展混合模型 (GMM)、手动实施 BCH 方法和三步法混合模型建模、各种结构方程模型的蒙特卡罗模拟功效分析以及潜类别分析 (LCA) 模型的样本量估计。 本书采用国际著名 SEM 软件Mplus估计所有模型,使用真实数据演示各种模型估计,详细解读程序代码及输出结果。本书提供
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
《广义逆的理论与计算》研究了广义逆的新理论和计算方法,主要包括加权M-P广义逆,加权DRAZIN逆和核逆的扰动理论及广义逆的神经网络算法,其中介绍广义逆的神经网络算法的专著在国内比较少。 《广义逆的理论与计算》适合计算数学、应用数学的研究生和科研工作者参考阅读。
本书是明朝三大数学名著之一,是我国数学史、珠算史上百科全书式的重要著作,内容几乎涉及现代初等数学、珠算的所有内容,故称为 大全 。 本书适合大中小学数学教师及广大数学爱好者阅读.
《稳态Navier-Stokes方程的Liouville定理》介绍了Navier-Stokes方程,特别是定常Navier-Stokes方程的基础知识和**技巧,重点讨论了Liouville定理与定常Navier-Stokes方程解的分类问题。第1章将回顾一些基本的工具和技术,包括Stokes方程的基本解、Stokes估计、Bogovskii映射等;第2章对于三维稳态Navier-Stokes方程,将描述一些主要的进展,包括一些取决于速度、总压力或势函数的Liouville唯一性结果;第3章将从Navier-Stokes方程的衰减估计来研究;第4章将介绍一些二维Navier-Stokes方程的进展,包括Liouville定理、解的衰减或分类估计;*后,第5章将从不同区域或其他模型来讨论Liouville定理的一些进展。
本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的和应用参考。
本书以通俗易懂的方式系统地介绍和阐述结构方程模型 (SEM) 的基本概念和统计原理,侧重结构方程模型的实际运用,介绍和示范各种常用结构方程模型,以及许多新近发展的模型,包括带分类条目的验证性因子分析 (CFA) 模型、双因子CFA模型、贝叶斯CFA 模型、缺失值多重插补 (MI)、潜变量合理值的估计和应用、调节中介效应模型、贝叶斯路径分析模型、带个体差异观察时间的潜发展模型 (LGM)、检验带分类变量的量表的测量不变性、纵向潜类别分析 (LLCA)、潜转换分析 (LTA)、带协变量和远端结局变量的潜发展混合模型 (GMM)、手动实施 BCH 方法和三步法混合模型建模、各种结构方程模型的蒙特卡罗模拟功效分析以及潜类别分析 (LCA) 模型的样本量估计。 本书采用国际著名 SEM 软件Mplus估计所有模型,使用真实数据演示各种模型估计,详细解读程序代码及输出结果。本书提
Thiook is dedicated to our wives Helen, Mary Lou and Song and our families for their support and patience during the preparation of thiook, and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method. In particular we would like to mention Professor Eugenio Oniate and his group at CIMNE for their help, encouragement and support during the preparation process.
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书系统介绍了SAMCEF软件在不同领域的基本理论、使用方法和应用实例。全书从内容上可分为四部分,部分为SAMCEF软件的介绍和基本使用,包括有限元方法和有限元软件介绍,SAMCEF软件包和功能模块的分析功能和基础知识,SAMCEF的安装方法和启动,SAMCEF的用户界面、建模功能、分析数据定义、有限元网格划分和求解分析过程,以及SAMCEF的后处理;第二部分以实例详解的方式说明SAMCEF Field建模、线性结构分析、线性模态分析、热分析、结构非线性分析和机构非线性分析等的具体操作和关键技术,每个实例都图文并茂地介绍了SAMCEF Field的操作流程,并对操作过程进行细致的解释,可满足各层次读者的需求;第三部分着重介绍SAMCEF转子动力学专业分析软件包SAMCEF Rotor所涉及的转子动力学基本理论和分析技术,包括横向振动和扭转振动两部分,并以多个实例介绍了SAMCEF Rotor
《干细胞科技与产业发展报告》主体内容共分三部分,分别为管理篇、科技篇和产业篇,主要跟踪分析国际干细胞领域研发策略,深入介绍干细胞科技研究进展,展望干细胞产业发展方向。在此基础上,提出对我国干细胞研究的建议,为我国干细胞领域政策制定及干细胞科研方向与产业发展提供参考依据和信息支持。 《干细胞科技与产业发展报告》可供干细胞领域管理人员、广大科研人员和产业人员阅读和参考。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从基本理论和