本书可作为高等师范院校教育学院、教师进修学院数学专业及重量、省级中学数学骨培训班的教材或教学参考书,也可作为广大中学数学教师及数学爱好者拓展数学视野读物。
本书是与“爱课程”网上厦门大学谭忠教授主讲的“偏微分方程MOOC”配套使用的教材。全书通过介绍偏微分方程产生的历史源头问题以及在当今世界的应用,使学生感受课程的理论价值和实际应用,主要内容包括现象与偏微分方程建模,偏微分方程一般概论,求解波动方程的柯西问题 (达朗贝尔公式),分离变量法,傅里叶变换法,能量方法、极值原理与格林函数法。全书纸质内容与数字课程一体化设计,紧密配合。数字课程包含微视频、PPT 课件等内容,为学生的学习提供思维与探索的空间。 本书可作为数学类各专业本科生的偏微分方程教材或参考书,也可供相关科技工作者参考使用。
本书系统地总结了作者和外数学家在无限维空间上测度和积分论研究中所得到的某些结果,部分尚属初次发表,全书包括六章:测度论的某些补充知识,正泛函与算子环的表示,具拟不变测度的群上调和分析,线性拓扑空间上的拟不变测度及调和分析,Gauss测度,Bose—Einstein场交换关系的表示,另有两个附录,介绍阅读本书所需的一些知识,本书供高等学校数学系高年级学生、研究生及这方面的数学工作者、理论物理工作者参考。
《完备开曲面上全曲率的几何》系统地介绍了2维完备非紧致黎曼流形上全曲率的几何,其中包括黎曼几何预备知识,Cohn Vossen定理,Huber定理,理想边界,割迹的结构,等周不等式,射线的质量,极点和割迹,测地线的性态等内容。书中介绍并推广了许多经典的几何结果。 通过研究射线的Busemann函数,讨论了完备开曲面的紧化问题。 作者在每一章中都提出了一些值得考虑的尚未解决的问题。并且加入了许多插图以加深读者对内容的直观理解。 《完备开曲面上全曲率的几何》假定读者已经掌握了微分几何的基础知识,可供大学数学系高年级本科生、研究生以及对现代微分几何感兴趣的数学工作者阅读和使用。