筛选条件:

  • 50~元以上
  • 4折-5折
清空筛选条件
顾客评分:
仅五星 以上 以上 以上 以上
销售价格:
0-10元10-20元20-30元30-50元50~元以上
折扣力度:
0折-4折4折-5折5折-6折6折以上
筛选:
    • StatQuest 图解机器学习(全彩)
    •   ( 402 条评论 )
    • (美)Josh Starmer乔什·斯塔默) /2025-03-01/ 电子工业出版社
    • Josh Starmer博士在YouTube的账号 StatQuest 视频总观看量突破7000万次(2024年11月统计的数据),他帮助全世界各行各业的人赢得数据科学竞赛、通过考试、顺利毕业、成功求职或实现晋升,因此被大家誉为 硅谷的守护神 。他那独特的图文表达形式和幽默的语言风格深受观众喜爱,这本《StatQuest图解机器学习》结合了他创新的视觉呈现方式,深入浅出地阐释了机器学习的基础和高阶知识,是一本轻松理解机器学习的 漫画书 。本书前3章着重介绍了机器学习的整体框架和核心思想,自第4四章起,逐一探讨了各种机器学习算法:从基础的线性回归(第4章)和逻辑回归(第6章)到朴素贝叶斯(第7章)和决策树(第10章),最后介绍了支持向量机(第11章)和神经网络(第12章)。随着读者学习的深入,第5章、第8章和第9章分别介绍了机器学习的进阶知识和实用技巧,如梯度下

    • ¥59 ¥118 折扣:5折
    • 大模型算法:强化学习、微调与对齐
    •   ( 0 条评论 )
    • 余昌叶 /2025-04-01/ 电子工业出版社
    • 本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。

    • ¥51.8 ¥109 折扣:4.8折
    • DeepSeek大模型高性能核心技术与多模态融合开发
    •   ( 220 条评论 )
    • 王晓华 /2025-03-01/ 清华大学出版社
    • 《DeepSeek大模型高性能核心技术与多模态融合开发》深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。《DeepSeek大模型高性能核心技术与多模态融合开发》循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术 多头潜在注意力(MLA)与混合专家模型(MoE)。此外,《DeepSeek大模型高性能核心技术与多模态融合开发》还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。《DeepSeek大模型高性能核心技术与多模态融合开发》配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 《DeepSeek大模型高性能核心技术与多模态融合开发》共分15章,内容涵盖高性能注

    • ¥56.6 ¥119 折扣:4.8折
    • AI驱动下的量化策略构建(微课视频版)
    •   ( 342 条评论 )
    • 江建武季枫梁举 /2024-09-01/ 清华大学出版社
    • 本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量

    • ¥51.8 ¥109 折扣:4.8折
    • Simulink仿真及代码生成技术入门到精通(第2版)
    •   ( 673 条评论 )
    • /2023-11-01/ 北京航空航天大学出版社
    • 工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。

    • ¥51.8 ¥109 折扣:4.8折
    • 工程控制论(下册)(第三版)
    •   ( 877 条评论 )
    • 钱学森,宋健 /2024-12-01/ 科学出版社有限责任公司
    • 本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。

    • ¥94 ¥188 折扣:5折
    • 人工智能伦理
    •   ( 428 条评论 )
    • 于江生 /2022-01-01/ 清华大学出版社
    • 人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。

    • ¥75.1 ¥158 折扣:4.8折
    • 动手学系列:深度学习PyTorch+强化学习+机器学习 当当套装3册
    •   ( 173 条评论 )
    • 阿斯顿·张Aston Zhang)[美]扎卡里·C. 立顿Zachary C. Lipton李沐(Mu Li /2024-03-01/ 人民邮电出版社
    • 9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用

    • ¥137.5 ¥289.5 折扣:4.7折
    • 统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)
    •   ( 1074 条评论 )
    • [美]特雷弗·哈斯蒂 [美]罗伯特·提布施拉尼 [美]杰罗姆· 弗雷曼张军平 译 /2021-01-01/ 清华大学出版社
    • 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。

    • ¥75.6 ¥159 折扣:4.8折
    • 大模型核心架构与应用解决方案(套装全2本)
    •   ( 79 条评论 )
    • [法]丹尼斯·罗斯曼(Denis Rothman),[美]斯楠·奥兹德米尔Sinan?Ozdemir) /2024-01-01/ 清华大学出版社
    • 大模型应用解决方案 基于ChatGPT和GPT-4等Transformer架构的自然语言处理 Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型,哪些 你的需求? 将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。 《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。研究机器翻译、语音转文本、文本转语音、问答等NLP任务,并介绍解决NLP难题的技术,甚至帮助你应对假新闻焦虑(详见第13章)。 从书中可了解到,诸如OpenAI的高级平台将Transformer扩展到语言领域、计算机视觉领域,并允许使用DALL-E 2、ChatGPT和GPT-4生成代码。通过本书,你将了解到Transformer的工作原理以及如

    • ¥76.9 ¥178.8 折扣:4.3折
    • 机器人控制系统的设计与MATLAB仿真:基本设计方法(第2版)
    •   ( 538 条评论 )
    • 刘金琨 /2022-04-01/ 清华大学出版社
    • 本书系统地介绍了机械手控制的几种先进设计方法,是作者多年来从事机器人控制系统教学和科研 工作的结晶,同时融入了国内外同行近年来所取得的**成果。 本书主要以机械手的控制为论述对象,共包括16章内容,分别介绍PID 控制、神经网络自适应控制、 模糊自适应控制、迭代学习控制、反演控制、滑模控制、自适应鲁棒控制、末端轨迹及力的连续切换滑模控 制、重复控制的基本原理及设计、机械手容错控制、基于事件驱动的机械手反演控制、基于输入延迟的机械 手控制、基于执行器量化的控制、基于控制方向未知的控制和多智能体系统一致性控制的设计与分析。每 种方法都给出了算法推导、实例分析和相应的MATLAB仿真设计程序。 本书各部分内容既相互联系又相互独立,读者可根据自己的需要选择学习。本书适合从事生产过程 自动化、计算机应用、机械电子和电气

    • ¥51.3 ¥108 折扣:4.8折
    • 深度学习精粹与PyTorch实践
    •   ( 133 条评论 )
    • [美] 爱德华·拉夫Edward Raff)著 郭涛 译 /2024-08-01/ 清华大学出版社
    • 深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估

    • ¥108.3 ¥228 折扣:4.8折
    • 模型预测控制
    •   ( 217 条评论 )
    • 陈虹 /2025-01-01/ 科学出版社
    • 本书在状态空间理论的统一框架下系统深人地介绍了预测控制的滚动优化原理、算法和闭环性能。首先通过本科生熟悉的状态空间模型建立起预测控制从原理到算法和性能分析的每一个细节。然后,介绍了阶跃响应模型和脉冲响应模型的状态空间描述,给出了与传统卷积描述的一致性。据此,遵循预测控制的三个步骤“预测系统未来动态-求解优化问题-解的第一个元素作用于系统”和“滚动时域、重复进行”机制推导了无约束的动态矩阵控制(DMC)和模型算法控制(MAC),分析了闭环性能,给出了闭环稳定性的分离原理。然后,依次讨论了时滞预测控制、约束预测控制、非线性预测控制,以及稳定性和鲁棒性研究的最新进展。最后,介绍了基于滚动优化原理的滚动时域估计和基于现场可编程门阵列(FPGA)的预测控制器实现技术。

    • ¥54 ¥108 折扣:5折
    • 硅基物语 我是灵魂画手:一本书讲透AI绘画 看清AI底层逻辑,玩转AI顶级绘画
    •   ( 801 条评论 )
    • 量子学派@ChatGPT /2023-08-01/ 北京大学出版社
    • 一本将 AI 绘画讲透的探秘指南,通过丰富的实践案例操作,通俗易懂地讲述 AI 绘画的生成步骤,生动展现了 AI 绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI 绘画的诞生,引发了奇点降临,点亮了 AGI(通用人工智能),并涉及 Prompt、风格、技术细节、多模态交互、AIGC 等一系列详细讲解。让您轻松掌握生图技巧,创造出独特的艺术作品,书写属于自己的艺术时代。

    • ¥64 ¥128 折扣:5折
    • 机器视觉——使用HALCON描述与实现
    •   ( 1128 条评论 )
    • 杜斌 /2021-04-01/ 清华大学出版社
    • 本书从数字图片开始讲起,介绍什么是数字图像。以halcon的安装,halcon的基础语法和数据结构起点,以图像的获取,图像的处理,图像匹配,区域的处理,区域的特征,亚像素轮廓特征,亚像素轮廓处理,数组操作为主要内容,*后结合实际案例,启发读者。内容包含理论讲解,和实际编程两个部分,理论讲解,说明图像处理原理,实际案例,实操算法,强化应用。使读者不仅可以明白原理,还能学以致用。内容讲解细致,没有编程基础的读者也能轻松入门。

    • ¥51.8 ¥109 折扣:4.8折
    • 数字革命史:一部看得见的数字技术发展简史
    •   ( 41 条评论 )
    • [法]亨利·利伦 著,萨日娜刘薇 译 /2024-12-31/ 中国科学技术出版社
    • 当智能工具成为我们日常生活不可或缺的一部分时,我们很容易忘记人类是如何迈入数字时代并一路走来的。然而,在历史上的一段时期内,聪明的人类却在创建由简单的0和1组成的字符串时遇到了众多极大的困难。《数字革命史》正是向这段历史致敬,没有这段历程,就没有我们今日智能手机、社交网络、互联网服务和人工智能的普及。这本书讲述了人类曾面临的最严峻的挑战,并呈现了现代新技术世界的奥秘。该书围绕五个主要章节带领读者畅游数字革命史之路,探究以惊人速度相继出现的数字技术并启发今天人工智能的新挑战。

    • ¥50.8 ¥118 折扣:4.3折
    • 机器学习与人工智能实战:基于业务场景的工程应用
    •   ( 401 条评论 )
    • [美] 杰夫·普罗西斯Jeff Prosise)著 /2023-07-01/ 清华大学出版社
    • 工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考

    • ¥65.6 ¥138 折扣:4.8折
    • 高通量多尺度材料计算和机器学习杨小渝9787030762825科学出版社
    •   ( 182 条评论 )
    • 杨小渝 /2024-04-01/ 科学出版社
    • 传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的

    • ¥99 ¥198 折扣:5折
    • 机器学习和深度学习:原理、算法、实战
    •   ( 345 条评论 )
    • [印] 文卡塔·雷迪·科纳萨尼({1 /2023-03-01/ 清华大学出版社
    • 本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)

    • ¥60.8 ¥128 折扣:4.8折
    • MediaPipe机器学习跨平台框架实战
    •   ( 167 条评论 )
    • 马健健 /2024-01-01/ 清华大学出版社
    • 《MediaPipe机器学习跨平台框架实战》以实际项目为线索,带领读者探索MediaPipe在不同场景中的应用,使读者既能了解理论知识,又能通过实践掌握技能。全书共9章,第1章介绍MediaPipe基础;第2章重点探讨MediaPipe的控制流、同步机制以及GPU的使用;第3章介绍MediaPipe中的Facemesh,探讨其在增强现实、AR滤镜和视频会议软件中的应用;第4章将MediaPipe与游戏控制相结合,介绍如何在体感游戏中应用MediaPipe技术;第5章以AR激光剑效果、火箭发射小游戏、空中作图等为例,展示MediaPipe在视觉特效方面的应用;第6章介绍如何使用MediaPipe实现手语识别应用;第7章展示如何通过MediaPipe打造虚拟智能健身教练;第8章通过案例介绍MediaPipe与Unity在游戏与虚拟现实领域整合应用的强大潜力;第9章展望MediaPipe的未来,为读者提供了对这一技术的更深层次的认识和思考。 《MediaPipe机器学习跨

    • ¥51.8 ¥109 折扣:4.8折
    • 计算机视觉:从感知到重建
    •   ( 94 条评论 )
    • 高盛华 厉征鑫 /2024-02-01/ 上海科学技术出版社
    • 本书主要介绍和探讨计算机视觉的一系列核心主题,包括相机成像,图像处理、分析和感知,三维重建等。首先介绍了相机模型、成像过程以及图像的颜色模型、照射模型、渲染模型等;然后系统性地介绍了图像滤波、特征提取、图像和视频感知与理解等多种任务,不仅详细讲解了各任务中的经典方法,还全面地介绍了前沿的基于深度学习的方法;最后介绍了三维重建中涉及的几何原理、重建步骤以及基于深度学习的新方法。 本书针对每一个核心问题单独成章,并着重讲解基本概念。通过大量的彩图,帮助读者理解问题。适合作为本科及研究生的计算机视觉和数字图像处理课程的教材,并且可以作为深度学习课程的参考书。同时,也可供对计算机视觉感兴趣的相关专业人士参考。

    • ¥64.1 ¥149 折扣:4.3折
    • 细说机器学习:从理论到实践
    •   ( 196 条评论 )
    • 凌峰 /2023-05-01/ 清华大学出版社
    • 《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习重要与高频使用的模型,包括K-Means聚类、K近邻、回归、决策树、朴素贝叶斯、支持向量机、神经网络等内容。本篇不仅详细讲解各个算法的原理,还提供大量注释详尽的代码示例,使这些算法变得直观易懂。第三篇为拓展应用,包括集成学习、深度学习框架TensorFlow与PyTorch入门、卷积网络、激活函数以及模型微调与项目实战。本篇内容更加前沿与高级,带领读者跨过机器学习的

    • ¥56.6 ¥119 折扣:4.8折
    • 大话机器学习——原理|算法|建模|代码30讲
    •   ( 329 条评论 )
    • 叶新江 /2023-06-01/ 清华大学出版社
    • 本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于 回归事物本质,规律性、系统性地思考问题 理论为实践服务并且反过来充实理论,为更多人服务 的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。 全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的 到底是什么,为什么要这样做 的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特

    • ¥56.6 ¥119 折扣:4.8折
广告