博弈论是在西方哲学、经济学、心理学、信息论的基础上发展创新出来的思维利器。我们身边无时无刻不存在着博弈,生活中常见的一些问题都能够运用博弈论来寻找*的解决之道,用博弈智慧来指导生活决策。 《从零开始读懂博弈论》通过图文结合的方式介绍博弈论的基本思想及运用,通俗易懂,饶有趣味,并寻求用博弈的思维智慧来指导生活和工作。读者可以在生活中常见的事例中轻松领会博弈思维的精髓,获取开启人生智慧的金钥匙。
本书根据高等数学课程教学基本要求,结合“将数学建模思想融入数学课程中”的基本思想及作者多年的教学实践编写而成。 本书在内容取材上兼顾与高中数学课程的衔接,注重数学思想和方法,增加了Mathematica数学软件的介绍。在例题和习题中尽可能地反映数学建模的思想。本书分上、下两册,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程,书末附有几种常见曲线、积分表、习题答案与提示等。 本书可作为高等院校理工科非数学专业的高等数学教材或教学参考书。
本教材分上、下两册出版:上册内容为函数、极限与连续,导数与微分,不定积分,定积分,简易微分方程等五章;下册内容为空间解析几何与向量,多元函数微积分,曲线积分与曲面积分,无穷级数,线性代数初步等共五章。每节配有适量的习题,每章配有本章内容小结和综合练习题,书末还附有各种相关图表及习题解答或提示。本教材本着简明、易学、实用的原则,选材恰当,观点新颖,结构严谨,叙述详细,通俗易懂。本教材配有较多例题,便于自学,适应性广,伸缩性强,可作为高等院校非数学各专业的学生使用,也可作为大专院校的专科教材或函授教材。
本书分为代数、几何、逻辑与思维方法三篇。前两篇补充一些数学知识,后一篇则是介绍逻辑知识及思维方法。本书的主要目的是弥补大学和中学数学教学上的脱节问题:首先是数学知识上的脱节;其次是逻辑和思维方法上的脱节。中学数学侧重于技巧,而大学数学要求对概念有深刻的理解,推理要严密等。本书旨在为大学生铺路架桥,让他们顺利地从中学过渡到大学数学的学习。本书还可作为大、中学数学教师的进修用书,对研究教材改革的同志也具有一定的参考价值。