《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
《从代数基本定理到超数:一段经典数学的奇幻之旅(第二版)》分为四个部分,共计十四章,如 从自然数系到有理数系 、 无理数与实数系 、 代数、基本定理的定性说明 、 业余数学家阿尔岗的证明 、 美国数学家安凯屈的证明 、 圆周率及其元理性 、 自然对数的底数e及其元理性 、 有关多项式的一些理论 、 代数扩域、有限扩域与代数元域 等。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
《离散数学及其应用(原书第7版)》是经典的离散数学教材,为全球多所大学广为采用。《离散数学及其应用(原书第7版)》全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思想以及应用与建模。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目以及丰富的历史资料和网站资料。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。
本书融有向图和无向图为一整体,系统地阐述了图论的基本概念、理论、方法及其算法,内容包括图的基本概念、Euler图与Hamilton图、图论算法、树及其应用、平面图、独立集与匹配、网络流和Petri网。 书中附有大量例题和习题,而且大部分习题有详细解答。 本书选材精炼全面,内容处理恰当且有新意,立论严谨,叙述条理清晰,语言流畅。 本书可用作高校计算机、电子、信息、管理、数学等专业本科生必修课,也可供相关专业的研究人员、教师及图论工作者参考。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
《高等代数解题方法与技巧》共6章,主要包括矢量代数与解析几何,一元多项式与行列式,矩阵及其在线性方程组和二次型理论中的应用,线性空间与线性变换,双线性函数与二次型,域上多元多项式环等内容。《高等代数解题方法与技巧》通过解答典型例题,阐释基本理论、思维方式和解题技巧;特别强调代数和几何的结合,强调各个知识点之间的联系和整合。在强调思想方法的同时,也重视技巧的训练,将思维与方法渗入到例题与习题中,使读者在学习高等代数知识的同时,掌握高等代数的思维方法,提高运用综合知识解决问题的能力和技巧。 《高等代数解题方法与技巧》适合理工科本科生使用,也适合有较好基础的数学爱好者。
代数学习是数学学习的重要内容,是后续数学学习的基础。与此同时,学生解决代数问题的能力是学习STEM学科(包括科学、技术、工程和数学)的基础。因此,对代数加工认知机制的探索有利于 全面、 深入地揭示个体数学能力发展的规律。本书将以“空间能力对代数学习是否发挥作用以及其认知与脑机制是什么”为中心,从认知行为研究层面、心理表征层面到神经基础层面,探讨空间能力在代数学习中的作用以及其认知与脑机制,以此为代数学习提供行理论基础以及行而有效的教学建议。
本套书是以理工类、经管类大学本科数学教学大纲和全国研究生入学考试数学考试大纲的要求为基准编写的教学辅导书,作者是清华大学数学科学系主讲教授。? 本书讲述“线性代数”课程的基本概念、基本定理与知识点,从基本概念、基本定理的背景及其应用入手,延伸到解题的思路、方法和技巧,并通过一法多题、一题多解的方式兼顾知识的综合与交叉应用,在内容的安排上,既体现出各知识点间承上启下的关系,保持学科结构的系统性,又照顾到各知识点间的横向联系,为读者从全局上、总体上掌握所学的知识提供平台。为巩固所学的基本概念和基本定理,安排了基本题、综合题(侧重本章知识点的综合)和交叉综合题(侧重各章知识点间的综合)供读者选用,并附有读者自测题,供读者选用。? 考虑到教学大纲和考试大纲中对理工类学生或考生的要求
KennethH.Rosen:DiscreteMathematicsandItsApplications,SixthEdition(ISBN978-0-07-288008-3).Copyright.2007byKennethH.Rosen.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorby anymeans,electronicormechanical,includingwithoutlimitationphotocopying,recording,taping,oranydatabase,informationorretrievalsystem,withoutthepriorwrittenpermissionofthepublisher.ThisauthorizedEnglishAdaptationisjointlypublishedbyMcGraw-HillEducation(Asia)andChinaMachinePress.ThiseditionisauthoriedforsaleinthePeople'sRepublicofChinaonly,excludingHongKongSAR,MacaoSARandTaiwan. Copyright.2010byMcGraw-HillEducation(Asia),adivisionoftheSingaporeBranchofTheMcGraw-HillCompanies,Inc.andChinaMachinePress.