《数值分析(第3版)》着重介绍适合于电子计算机上采用的数值计算方法及其理论,内容包括误差分析、非线性方程求根、线性代数方程组数值解法、多项式插值与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程数值解法等。 《数值分析(第3版)》内容覆盖了*工科研究生数学课程教学指导小组所制订的工科硕士生数值分析课程教学基本要求,同时还增加了一些工科专业所需要的内容,如机器数系、有理函数插值、振荡函数积分等。书中对各种计算方法的构造思想都作了较详细的阐述,对稳定性、收敛性、误差估计以及算法的优缺点等也作了适当的讨论。 《数值分析(第3版)》还挑选了部分东南大学工科研究生结合各自专业自选课题的计算实习,以此作为《数值分析(第3版)》各章的应用实例。 《数值分析(第3版)》可作
本书紧扣当前工业自动化领域的发展热点,理论联系实际,内容涉及原理介绍、技术分析和应用实例,对工业通信网络和系统集成做了全面的阐述。
本书主要以李庆扬、王能超、易大义三位教授编写的《数值分析》(清华·第四版)的章节为顺序,以其内容为基础而编写的。共分九章,每章设计了五个板块: 一、重点内容提要,列出基本概念、重要内容简介,重要定理和公式,突出考点的核心知识。 二、知识结构图,用框图形式列出各知识点间的有机联系。 三、常考题型及典型精解,从多年教学经验出发,列出了常见考研题型和课程结业考试试题,并编入一些典型题,给出了详细解答。其中不少题目是对相应内容的进一步补充。 四、学习效果测试题,这一部分是为检查读者的学习效果和应试能力而设计的。通过测试,读者可以进一步加深对所学内容的理解,增强解题应试能力。 五、课后习题全解 对《数值分析》(清华·第四版)的课后习题作了详细解答。 本书从指导课程教学、学习和考
本书是为正在学习数学分析(微积分)的读者,正在复习数学分析(微积分)准备报考研究生的读者以及从事这方面教学工作的年轻教师编写的。 遵循现行教材的顺序,本书全面、系统地总结和归纳了数学分析问题的基本类型,每种类型的基本方法,对每种方法先概括要点,再选取典型而有相当难度的例题,逐层剖析,分类讲解。然后分别配备相应的一套练习。旨在拓宽基础,启发思路,培养学生分析问题和解决问题的能力,作为教材的补充和延深。此外,对现行教材中比较薄弱的部分,如半连续、凸函数、不等式、等度连续等内容,作了适当扩充。 全书共分7章、33节、220个条目、1200个问题,包括一元函数极限、连续、微分、积分、级数;多元函数极限、连续、微分、积分。 本书大量采用全国部分高校历届硕士研究生数学分析入学试题、苏
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解,并学会掌握数学分析的精髓。本书虽是给那些想提高自己数学分析水平的工程师写的,但对于经济学家、数学教师、数学系的学生等,都具有非凡意义。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解, 并学会掌握数学分析的精髓。 本书虽是给那些想提高自己数学分析水平的工程师写的, 但对于经济学家、数学教师、数学系的学生等, 都具有非凡意义。