本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
微积分是人类历 的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们 应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。 在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的“钥匙”打开了宇宙奥秘之“锁”?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响?在《微积分的力量》书中,应用数学家兼“导游”斯托加茨将用一种“讲故事”和“看展览”的方
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。《Barron'sAP微积分》(作者博克、霍基特)是关于介绍微积分的专著。
微积分最有用和急需的有两张表导数表和积分表怎么得到的?过去的证明又长又深陷入泥潭,但本书另择渠道,把证明复杂度降到几步高中数学,又短又浅,是教学的巨变,也圆了微积分高中化之梦!一举攻破两张表后还不够,大学专业或考研的学生要学更多(包括微分方程、多元微积分及抽象微积分)。这时,高中数学已不够用,必须有极限以及更高深的方法参战,本书只是按浅到深、急到缓顺序出场,概念能少就少,证明越浅越好,不误用不添乱,到了该出手才出手。书中还对比了微积分教学的过去和现在。
《沉积岩岩石学》教材全面而系统地介绍了沉积岩岩石学的基础知识、基本原理及其沉积岩鉴定与研究的基本技能和方法,并尽可能反映了近年来沉积岩岩石学和沉积学的新进展。 《沉积岩岩石学》可作为地质学、矿产普查与勘探、石油工程和地球化学等专业的本科教学用书,也可供相关专业研究生、广大教学和科技人员参考。
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积分头疼的以及学习过微积分但
编者希望通过本教材的学习,读者除了掌握常微分方程的基本概念与解法外,能够对它有更多方面的了解。其中第三、六和七章可根据学时的多少和学生的水平取舍,一般说来,第七章是属于偏微分方程的内容。 本书共有十一章,前六章或加上第七章是常微分方程的内容,第七章或第八章到第十一章是偏微分方程的内容,附录包括“常微分方程的初值问题解的存在、性定理”、“一阶偏微分方程初步”和“关于特征值问题的讨论”。
不管你是理工科系的学生, 还是学商业、国际贸易、经济,可能都有这样的微积分修谋经验: 无论多么专心听讲,教授讲的内容你仍然听不懂。 本书试图告诉读者 “千万不要误以为昕不懂全是自已的错!” 本书是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。 想换一种方式,理锯这些令人头疼的课题吗? 目的就是希望帮助读者更容易了解一般教科书里的精髓。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书系统地论述了微分几何的基本知识。作者用前3章,以及第6章共计4章的篇幅介绍了流形、多重线性函数、向量场、外微分、李群和活动标架等基本知识和工具。基于上述基础知识,论述了微分几何的核心问题,即联络、黎曼几何、以及曲面论。第7章是当前十分活跃的研究领域——复流形。陈省身先生是此研究领域的大家,此章包含有作者独到、深刻的见解和简捷、有效的方法。第8章的Finsler几何是本书第2版新增加的一章,它是陈省身先生近年来一直倡导的研究课题,其中Chern联络具有突出的性质,它使得黎曼几何成为Finsler几何的特殊情形。最后两个附录,介绍了大范围曲线论和曲面论,以及微分几何与理论物理关系的论述,为这两个活跃的前沿领域提出了不少进一步的研究课题。 此书可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从
《偏微分方程(第2卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了pde和多变量方法之间的关系。本书是第二卷主要讲述了banach空间算子方程的可解性,hilbert空间线性算子和谱理论;线性椭圆微分方程的schauder理论;微分方程弱解;非线性偏微分方程;非线性椭圆系统和微分几何应用。书中各章的独立性较强,有偏微分方程基本知识的读者可以独立阅读各章。目次:banach空间中的算子;hilbert空间线性算子;线性椭圆微分方程;非线性偏微分方程;非线性椭圆系统。 读者对象:数学专业的本科生,研究生和相关的科研人员。
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积分头疼的以及学习过微积分但
《沉积岩岩石学》教材全面而系统地介绍了沉积岩岩石学的基础知识、基本原理及其沉积岩鉴定与研究的基本技能和方法,并尽可能反映了近年来沉积岩岩石学和沉积学的新进展。 《沉积岩岩石学》可作为地质学、矿产普查与勘探、石油工程和地球化学等专业的本科教学用书,也可供相关专业研究生、广大教学和科技人员参考。
这批教材普遍具有以下特点:(1)基本上是近3年出版的,在国际上被广泛使用,在同类教材中具有相当的性;(2)高版次,历经多年教学实践检验,内容翔实准确、反映时代要求;(3)各种教学资源配置整齐,为师生提供了极大的便利;(4)插图精美、丰富,图文并茂,与正文相辅相成;(5)语言简练、流畅、可读性强,比较适合非英语国家的学生阅读。 通过影印、翻译、编译这批教材,我们一方面要不断地分析、学习、消化吸收国外教材的长处,吸取国外出版公司的制作经验,提升我们自编教材的立体化配套标准,使我国高校教材建设水平上一个新台阶;与此同时,我们还将尝试组织海外作者和作者合编外文版基础课数学教材,并约请专家改编部分国外教材,以适应我国实际教学环境。
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积分头疼的以及学习过微积分但
本书针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、微分方程、常微分方程以及Markov链。 全书共分三部分,部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均对本章的一些结论进行了推广和扩展,并附上参考文献。除章外,所有章节均提供相应练习。 本书既可作为高等院校本科和研究生教材,也可作为教师、工程技术人员和业余爱好者的自学用书。
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数.