本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
《边界积分-微分方程方法的数学基础(英文版)》主要讨论边界积分-微分方程的数学基础理论,主要聚焦于把传统的边界积分方程中的超奇异积分转化为带弱奇性的边界积分-微分方程。《边界积分-微分方程方法的数学基础(英文版)》简要介绍了分布理论,而边界积分方程方法基于线性偏微分方程的基本解,所以对微分方程的基本解做了较为详细的介绍。在余下的章节里,依次讨论了拉普拉斯(Laplace)方程、亥姆霍兹(Helmholtz)方程、纳维(Navier)方程组、斯托克斯(Stokes)方程等的边界积分-微分方程方法和理论;还讨论了某系非线性方程,如:热辐射、变分不等式和斯捷克洛夫(Steklov)特征值问题的边界积分-微分方程理论。最后,讨论了有限元和边界元的对称耦合问题。
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
And all of the above is a basis for modeling. Modeling is what brings the subject to life and makes the ideas real for the students: Differential equations can model real-life questions,and puter calculations and graphics can then provide real-life answers. The symbiosis of the synthetic and the calculational provides a rich educational experience for students, and it prepares them for more concrete, applied work in future courses. The new Anatomy of an Application sections in this edition showcase some rich applications from engineering, physics, and applied science.
本书旨在介绍非线性微分方程研究的主要内容、典型方法和成果,其中包括作者近年的一些研究工作。本书系统地阐述了非线性常微分方程的基本理论、几何理论、稳定性理论、振动理论与分支理论等,还分别介绍了非线性泛函微分方程及非线性脉冲微分方程的相应理论。本书致力于核心概念的引入、基本定理的阐述、思想方法的揭示,以及非线性微分方程在现代科技领域中的应用。 本书可作为高等院校数学系、应用数学系及控制、管理、工程、医学等专业的大学生、研究生的教材或参考书,也可供相关教师及科研人员参考。
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
本书系统介绍偏微分方向的基本概念及其应用,主要内容包括热传导方程、分离变量法、傅里叶级数、施图姆一刘维尔特征值问题、偏微分方程的有限差分数值法、非齐次问题、定常问题的格式函数、无穷域问题、波动方程和热传导方程的格林函数、线性和拟线性波动方程的特征线法以及偏微分方程的拉普拉斯变换解法等。 本书注重应用、内容广泛、层次清晰,适合作为高等院校理工科非数字专业高年级本科生或研究生数学物理方程课程的教材或教学参考书,还可以作为数学专业同类课程的参考书。