全书共八编及附录.前五编为平面几何部分,包括绪言,直线与直线形、圆、比例、相似多边形、多边形之面积、正多边形、圓之度量.后三编为立体几何部分,包括空间之直线及早面、多面角、多面体、柱及锥、球。附录包括平面几何之实用题、三角函数、几何学简史、重要公式等. 三S几何学说理严密清楚,选材适当,教的人容易教,学的人容易学,是一种较为的教科书.关于该书之特色,傅种孙在算学丛刻社翻印本卷首“重刻序”中有过中肯的评价:兹摘录如下: 自欧几里德集几何之大成,几何原本一书擅思想界无上之,盖二千年于兹矣。……百年以前几何原本而外无通行之教科书,即有之,其名必曰“欧氏原本”,而其实亦不过欧氏原本焉已耳. 近百年来几何教科书独如雨后春笋,既萌既滋者,原因所在,约有三端:一曰适应实用,二日便利
本书集中介绍了最近几年出现的、在研究分形的数学理论中行之有效的各种新技巧,其中包括各种研究维数及分形集和分形测度的其它参数的方法,以及概率分析中的重要定理,如遍历定理和更新定理在分形研究中的应用,同时还阐述了许多新的更复杂的技巧,如热力学形式体系及切线测度等,这都是深入研究分形必不可少的工具。 本书可以看成是《分形几何一数学基础及其应用》一书的续篇,是深入进行分形理论研究的教科书和参考书。 本中译本的翻译出版获得了广东省自然科学基金的部分资助。
《离散几何讲义(英文影印版)》旨在为读者提供一本学习离散几何的引入教程,主要内容包括凸集,凸多面体和超平面的安排;几何构型的组合复杂性;交叉模型和凸集的截面;几何ramsey型结果;有限几何空间嵌入到赋范空间等。在好多应用领域,都可以涉及到这里的很多结果和方法。目次:凸性;点格和minkowski定理;凸独立子集;事件问题;凸多面体;下包络;凸集的相交模型;几何选择定理;计数k-集;高维多面体的两个应用;高维中的体积;测度集聚和球面集;嵌入有限度量空间到赋范空间。 读者对象:数学专业的本科生、研究生和相关领域的科研人员。
本书是一本全面介绍分形几何理论及其在各领域应用的专著。全书分成两部分,部分阐述了分形与分形几何的一般理论,包括维数的各种概念及计算方法,分形的局部结构,分形的射影、乘积和交集等;第二部分主要是分形的应用举例,包括自相似集和自仿射集、函数的图、数论和纯数学中的例子、动力系统、Julia集、分形及物理应用等。本书还提供了课程建议和较为全面的参考文献。 本书对分形的介绍深刻而全面,可作为数学工作者和科研人员学习分形的参考书;合理地选择适当的章节,也可作为高年级本科生和研究生的教材。
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省论著一等奖;第二版于2000年由台湾九章出版社出版。
thiook is an outgrowth of my introduction to differentiable manifolds (1962) and differential manifolds (1972). both i and my publishers felt it worth while to keep available a brief introduction to differential manifolds. the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. in differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). one may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (for example, a la smale [sm 67]). in differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a riemannian metric, ad lib.) and studies properties connected especially with these objects. formally, one may say that one studies properties invariant under the group of. dif