这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键,《迭代方法和预处理技术(上册)》系统而深入地介绍了迭代方法、预处理技术及其并行计算,迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、多层和多重网格预处理、问题相关预处理以及非线性预处理;为了方便实施,介绍了迭代方法和预处理技术在诸多方面的应用,并用统一框架介绍了网上可得到的解法器和预处理软件包。 《迭代方法和预处理技术》可用作并行数值方法等相关专业的硕士和博士研究生教材,也可作为关心代数方程组高效求解的科研人员的参考书。
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe with jaun- diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory.For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequ
本书阐述了半参数回归模型的统计理论和方法,所考虑的模型包括部分线性模型、单指标模型、变系数模型和可加模型等,这些模型对复杂数据分析起着重要作用。本书在取材上侧重内容的科学性和应用性,体现学术思想;在写作上注重阐述方法论、模拟计算和实例分析:在结构上安排每个模型为一章,本书的内容不仅为从事该领域的科研人员提供了尽可能全的资料,又为实际应用者提供了一些数据分析的方法,同时也为想全面了解现代统计模型的读者提供参考读物。《BR》
本书是数理统计方面的经典教材,从数理统计学的初级基本概念及原理开始,详细讲解概率与分布、多元分布、特殊分布、统计推断基础、极大似然法等内容,并且涵盖一些 主题,如一致性与极限分布、充分性、 假设检验、正态模型的推断、非参数与稳健统计、贝叶斯统计等.此外,为了帮助读者 好地理解数理统计和巩固所学知识,书中还提供了一些重要的背景材料、大量实例和习题. br>本书可以作为高等院校数理统计相关课程的教材,也可供相关专业人员参考使用.
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法。多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论。多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法。既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展。书中给出一些有启发性的实例和习题。书末附录给出一些代数补充知识。
本书系统介绍概率计量逻辑的基本理论及其应用,主要是作者十余年来研究工作的系统总结,同时也兼顾国际上有关此领域中的主要研究成果.全书共十章,具体内容包括逻辑公式的概率真度理论、逻辑公式的Choquet积分真度理论、概率计量逻辑推理系统、逻辑理论的相容度及程度化推理方法、极大相容逻辑理论的结构及其拓扑刻画、R0-代数中的三值Stone拓扑表示定理、逻辑代数上的态理论、逻辑代数上的内部态理论与剩余格上的广义态理论等.