本书针对微观经济计量分析做出了详细研究,内容涉及对揭示个体或厂商经济行为的个体层面数据加以分析。 本书旨在为应用研究者提供一种综合的统计方法,以及将其用于现代微观经济计量领域的研究方法。 本书适合从事相关研究工作的人员参考阅读。
随着高等教育改革的不断深入,以“宽口径、厚基础、强能力、求创新”为取向,以“知识、能力、素质协调发展”为目标的高等教育改革大方向业已形成。转变教育教学思想观念,改革人才培养模式,着力加强学生实践能力和创新精神培养已成为新一轮高等教育教学改革的重点和难点。知识来源于实践,实践出真知。注重理论与实践的有机结合,着力培养高素质应用型高级专门人才是我国高等教育的基本任务之一。因此,从教学的基本形态看,理论教学与实践教学是构成高校教学活动的“两翼”,缺一而不成,在人才培养过程中发挥着不可替代的重要作用。
本书具有如下特点: (1)在满足教学要求的前提下,淡化理论推导过程;为缓解课时少与教学内容多的矛盾,恰当把握教学内容的深度和广度,遵循基础课理论知识以必须够用为度的教学原则,不过分追求理论上的严密性,尽可能显示数学内容的直观性与应用性,适度注意保持数学自身的系统性与逻辑性。 (2)语言精简严谨,篇幅较传统教材少,但基本内容囊括且有一定的深度。 (3)章节安排符合认知规律,语言通俗易懂,既便于教师讲授,也易于学生阅读、理解。 (4)注重理论联系实际和培养学生的综合素质,不仅关注数学在经济类专业的直接应用,而且增加了大量数学在经济等方面应用的例子,还结合具体教学内容进行思维训练,重视培养学生的科学精神、创新意识以及解决实际问题的能力。 (5)每节后配有思考题和练习题,通过思考题试图达到使学
杨东方、王凤友编著的《数学模型在生态学的应用及研究(33)》通过阐述数学模型在生态学的应用和研究,定量化地展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过该书的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。 此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。 本书主要内容为:介绍各种各样的数学模型在生态学不同领域的应用,如在地理、地貌、水文和水动力以及环境变化、生物变化和生态变化等领域的应用。详细
面板数据计量经济分析已经成为计量经济学研究的重要分支之一,本书系统介绍了面板数据模型的理论方法和应用,其内容包括静态、动态面板数据模型的设定、估计、检验和应用。尤其是对于非经典(非平稳)面板数据的计量经济分析方法的系统介绍是本书的特色之一。其次,本书还集中讨论了受限因变量面板数据模型、非平衡面板数据模型和面板数据联立方程模型的技术方法,指出了面板数据计量经济分析的发展方向。 本书适合高等院校经济学类本科生、研究生使用。
《数学建模算法与应用》 《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。全书系统全面,各章节相对独立。《数学建模算法与应用(第2版)》所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,服了很多读者看懂算法却解决不了实际问题的困难。 《数学建模算法与应用习题解答(第2版)/数学建模系列丛书》 本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划
博弈论原本为游戏理论,这一理论涉及的“游戏”范围甚广:人际关系的互动、球赛或麻将的出招、股市的投资等等,都可以用博弈论巧妙地解释,可以说,红尘俗世,莫不博弈。 博弈论探讨的就是聪明又自利的“局中人”如何采取行动及与对手互动。人生是由一局又一局的博弈所组成,你我皆在其中竞相争取高分。所以说人生是一场永不停止的博弈游戏,每一步进退都关乎成败。 研究博弈理论以及其中的各种均衡,是经济学家们的事。但是,把博弈论中的精髓拿来为我所用,争取获得每一次竞争和选择的胜利,是我们每个人都要关注的事情。艰涩的经济术语和数学计算也许会让你头疼,但其中蕴含的道理可以让你获益匪浅。 本书精选了10个重要的博弈理论,为了让你阅读起来更轻快,尽量深入浅出地讲解各种博弈模型,然后用丰富、生动的故事,向你
《动力系统反控制方法及其应用》详细论述了离散时间系统、连续时间系统和切换系统反控制(即混沌化)的研究方法与应用及其电路设计与实现,共20章。~9章主要介绍离散时间系统反控制,包括数学预备知识与混沌的基本概念,离散时间系统反控制的Chen-Lai算法及其电路实现,离散时间系统反控制的Wang-Chen算法,单峰和多峰映射,离散正弦多峰映射,线性取模运算多峰映射,混沌控制与同步,离散时间系统的单变量反控制、同步及其在混沌序列密码中的应用,高维广义超混沌猫映射及其在分组图像加密中的应用等。0~19章主要介绍连续时间系统与切换系统的反控制,包括连续时间系统与切换系统反控制方法概述,连续时间线性系统的反控制,连续时间非线性系统的反控制,三维切换系统的反控制,四维切换系统的反控制,具有指标1鞍焦平衡点和相同特征平面的