《这才是好读的数学史》介绍了数学从有记载的源头向*初的算术再向代数、几何(平面几何、立体几何、解析几何)、统计学、运筹学等领域不断深化发展的历史进程。按历史发展的顺序先后介绍了古希腊、古印度、古巴比伦、古代中国、中世纪欧洲和15至16世纪数学在顺应社会实践需要的基础上出现的深化、突破。在介绍数学历史的基础上,主要对30种有关基础数学的普通概念进行了独立精彩的叙述,再现了毕达哥拉斯、欧几里德、欧拉等数学大师的风采,还特地穿插了女性数学家在数学发展中做出的巨大贡献,从各方面为读者还原了真实、有趣的数学历史。
这是一本充满欢乐的数学书。作者本 奥尔林在做数学老师的十几年里发现,大多数学校都把数学这门课教得乏味透顶,他自己开始也是这样。有一天他在解释一道题时画了一条滑稽的小狗,惹得学生们哄堂大笑,这让他豁然开朗:孩子们看到一向聪明、专业的老师画的画这么 烂 ,突然觉得数学不再高高在上,而是变得可亲起来。从此,他的数学课充满了欢声笑语,学生有了飞跃的进步,并且获得了数学学习的秘籍 理解。 这本书就是奥尔林老师课堂的延续,书中融入了400多幅他标志性的 烂插画 、火柴人形象、幽默的笑话,书里没有几个方程式(有也是装饰),也不讲解题细节。这本书告诉所有人,数学在生活中无处不在:城市建设要用到几何学,A4纸的尺寸为什么是合理的,蚂蚁从高处掉下来为什么摔不死 从烤蛋糕、看球赛、玩桌游到买彩票、考试、遗传基因
一部有故事的数学游戏书!517个开发大脑潜能的数学谜题,激发孩子数学兴趣。 在本书中,英国知名智力游戏专家、发明家、《大脑游戏天书》作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了517个经典的数学迷题,这些数学迷题有12大类,分为激发思考的玩意、几何、点和线、图像和网络分布、曲线和图、形状和多边形、模式、分切、数字、逻辑和概率、拓扑学、科学,其中不仅有许多历史上有名的数学谜题,也有作者自己设计的独特游戏。
人类什么时候在绳子上打下个结? 为什么位女数学家会死于非命? 有可能把一个球体的内部翻转出来吗? 这些只是这本插图精美的书中涉及的众多引人深思的问题的一小部分。作者皮寇弗为我们展示了数学发展史重要的里程碑事件背后的魔力与神奇,包括人类曾经思索过的古怪的问题,从公元前一亿五千万年到的前沿突破。 数学已经渗入每一个科学领域,并且在生物学、物理、化学、经济、社会学和工程等方面扮演着无法替代的角色。我们可以用数学说明夕阳色彩分布的情况,也可以用来说明人类的大脑结构,可以帮助我们探索比原子还小的量子世界,也可以帮助我们描绘遥不可及的银河系。 在现实世界运用的著名计算公式和数学定理背后隐藏着数学家们一生的传奇故事。跟随皮寇弗踏上这趟数学之旅,探索数学历重要的250个里程碑事件,从蚂蚁计数到把
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
与历史上的数学天才一起挑战头脑体操! 315个经典游戏开发大脑潜能,呈现数学之美。 在《迷人的数学》中,世界著名智力游戏专家、百万级畅销书作者伊凡 莫斯科维奇,用他标志性的精彩图解,呈现了315个经典烧脑游戏,其中不仅有许多历史上著名的数学谜题,也有他自己设计的独特游戏。 作者也巧妙地将从史前时代到21世纪的数学史融入这些游戏题中,让你在挑战谜题、开启大脑潜能的同时,了解数学前进的轨迹,领略数学的迷人魅力。这是一本有观点、有故事的数学益智书,献给所有热爱美感、惊奇、挑战、数学与游戏的人。
《自然哲学的数学原理》书中牛顿的成就多到数不胜数,明显的例子就是牛顿运动定律,这一定律至今仍然传授于世界各地。牛顿为微积分提供了概念基础,尽管他在书中没有明确使用微积分,但精通数学的读者可能会猜测牛顿正在使用一种新技术。至关重要的是,牛顿从他的平方反比定律推导出了开普勒三定律。他证明了开普勒方程没有代数解,并提供了计算方法。在牛顿这部划时代伟大的著作中,读者更能欣赏到他在物理学之外的卓越成就。牛顿在本书中的只言片语,如今也将被成千上万的作者呈现在无数论文中,这是科学的胜利。牛顿不仅解决了长期以来如何求证行星轨道的难题,而且还用他的理论解释了很长时间里独立且无法解释的现象:潮汐、岁差、月球的轨道、单摆模型和彗星的出现。在本书中,牛顿证明了现代科学的标志是什么 将尽可能多种不同
微积分与日常生活有哪些交集? 本书通过28个引人入胜的故事,展示了微积分这种语言,它可以解决我们人类每天都在努力解决的问题 爱、风险、时间,以及重要的事情 变化 。 书分为 瞬间 和 永恒 两部分,从夏洛克 福尔摩斯到马克 吐温,它将发掘微积分、艺术、文学和一只与猫王同名的柯基犬之间的联系。 你将看到奇怪的符号、疯狂跳跃的逻辑以及微积分的真正用途。无论是数学恐惧症患者还是数学发烧友,这都将是一本影响终生的书。
《几何原本》是现代数学的基础,大约成书于公元前300年。被称为有史以来最为成功的教科书。 《几何原本》全书共13卷,1-6卷的主要讲平面几何,7-8卷主要阐述数论,10卷讲不可公度线段,11-13卷主要讨论立体几何。19世纪之前,如果说有一门学科的知识一直被当作 真理 的完美典范的话,那它就是欧几里得几何。它被普遍作为一种绝对精确、永远有效的推理结构。 后世的许多伟人都称自己受到《几何原本》的巨大影响。 牛顿的《自然哲学之数学原理》写作结构完全仿造《几何原本》。爱因斯坦曾言: 第一次看到《几何原本》这本书就惊为天人。 徐光启首次将《几何原本》翻译为中文时,盛赞 能精此书者,无一事不可精;好学此书者,无一事不可学。
《超图解秒懂数学》采用独特的图解方法阐释数学的基本原理,将抽象的数学知识形象化、生活化、趣味化,图文并茂,轻松培养读者的数学思维和图形化思维能力。全书分为数与式、图形、方程式与函数、概率与统计四大版块,全面涵盖了从小学到高中的数学基础概念,并配有各年级学习内容对照表,方便读者按需学习。 本书在编排上充分考虑到各类读者群体的需求。对小学生来说,父母的辅导不仅能够提升他的成绩,而且能够加深亲子感情,因此对于加法、减法、分数、小数等小学知识,本书运用全彩的数字、有趣的插图和例题,吸引孩子的兴趣,让父母和孩子都能够快乐地沉浸在数学世界中。对初高中生而言,想要取得好成绩,自学不可或缺,因此对于方程、函数、概率、微积分等初高中数学知识,本书利用简单的插图、生活化的例题、清晰的
本书集结了丘成桐先生近半个世纪以来探讨数学和人文教育的系列文章,呈现了一位天才数学大师沟通数理与人文的努力与实践,透射出其追求真与美的数学观、人生观,一字一句皆饱含着对真理的热爱、对美的追求以及对祖国科学事业的殷殷之情。 丘成桐在书中分享了毕生研究数学、传授数学的经历和经验,讲述了世界范围内数学家群星闪耀的历史传奇,揭秘了 卡拉比-丘流形 的诞生历程和几何奥妙,也有大量篇幅谈及中国教育的现状和问题。 读者可在书中了解这位誉满世界的杰出数学大师的治学心迹与家国情怀,感受天才头脑的思维活力和深厚的人文底蕴,见证他追寻学问的理性以及对人才教育的计之深远。
贝尔是美国重要的数学史家。他的这部《数学大师》是介绍数学史和数学艺术的经典著作。本书深入浅出地介绍了数学发展的历程,从古希腊的几何学,历经牛顿的微积分学,再到概率论、符号逻辑等等,都有详略适宜的叙述。同时,本书又告诉我们,数学家并不是一群躲在象牙塔内冥思苦想、不食人间烟火的怪人,他们除了智力过人以外,也和我们一样,有着世俗的欲望和追求,经历着常人的喜悦和苦恼。全书以历史上30多位数学大师的生平为主线,分章讲述了他们的杰出贡献、性情喜好和生活轶事。《数学大师》也是一部思想史,追述了从古代到20世纪数学思想的伟大发展。它以清晰的笔触、幽默的手法,对复杂的数学思想作了巧妙的分析和论述。无论是数学专业人士,还是一般读者,都可以从本书中获得许多有关数学和数学发展史的知识,对那些久闻其名的
全书正文7章,原稿有4个附录,译者额外增加两个附录。 正文首先介绍了毕达哥拉斯与著名的毕达哥拉斯定理,随后向读者展示了毕达哥拉斯定理的多种证明方式。随后,介绍了毕达格拉斯定理在数学上的应用、毕达哥拉斯三元组的性质及这些三元组与其他数学定理间的关系。最后三章则结合案例说明了毕达哥拉斯平均值、毕达哥拉斯与音乐及分形艺术中的毕达哥拉斯定理。 附录则是对正文的补充,将正文中一笔带过的一些生命在此处进行了详细描述。译者涂泓与冯承天补充了毕达哥拉斯三元组一些其他性质及其证明。
本书从历史的角度出发,围绕着促成了数学之美的圆周率的无数主题,介绍了数学史上人类对圆周率的研究起源和研究历程、圆周率算法的发展;还介绍了圆周率的一些奇特的数学性质、文化艺术中出现的圆周率元素、圆周率的应用、关于圆周率的悖论等。旨在向读者说明,圆周率不是一个普通的数字。相反,它是一个特别的数字,会在最意想不到的诸多地方出现。读者还将会发现,这个数字在整个数学中是多么有用。本书以一种通俗易懂的方式向读者介绍,从而使读者意识到在这个极为重要的数字的研究中所具有的固有的美。
《无穷之旅》是一部探讨无穷大概念的著作,它从代数、几何、美学和宇宙学等多个角度,全面而深入地阐述了无穷大的内涵和外延。书中内容主要分为四篇: 代数的无穷大:探讨了无穷大的起源、发展以及在数学中的合法化过程,包括收敛与极限、无穷级数的魅力、几何级数等内容。 几何的无穷大:通过一些函数及其图形、圆中的反演、地图与无穷大等话题,展示了无穷大在几何领域中的奇妙应用。 美学的无穷大:从艺术和美学的角度审视无穷大,探讨了人们对无穷大的喜爱和追求,以及无穷大在艺术创作中的体现。 宇宙学的无穷大:将无穷大的概念引入宇宙学领域,探讨了宇宙的起源、边界以及不断膨胀的宇宙等话题。 最重要的是,作者与读者分享了数学家对无穷大的追寻和痴迷,让读者一起踏上追寻无穷大的旅途。
黄金分割也许是最奇妙、最有趣的数学现象。为了让读者充分欣赏黄金分割带来的各种视觉美,作者将带领读者经历一段几何体验之旅。本书追溯了黄金分割如何在历史上出现,介绍了一些相当不寻常的构建黄金分割的方法,此外还介绍了许多有黄金分割嵌入在其中的、令人惊讶的几何图形。本书还揭示了黄金分割比和斐波那契数列、毕达哥拉斯定理之间的联系,介绍了植物界中的黄金分割、分形中的黄金分割。本书只要求读者具备一些初等的几何学知识。
《自然哲学的数学原理》是一本划时代的科学巨著,从理论上对前人及同时代人(包括牛顿本人)的科学成果作了总结,建立了经典力学的基本理论基础。 本书涉及的内容极其广泛,包括天文、物理、生物、心理、政治、经济、法律与军事等领域。在书中,牛顿遵循古希腊的公理化模式,从定义、定律(公理)出发,导出命题;对具体的问题,从理论导出的结果和观察结果相比较。从科学角度去看,本书示范了一种现代科学理论体系的样板,包括理论体系的结构、研究方法和研究态度、如何处理人与自然的关系等多方面内容。 《自然哲学的数学原理》不仅影响了自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响,并因此形成了我们今天的 世界图像 。
这本书中提供了大量的趣味数学例子,包括几何、代数、概率、逻辑,以及其他一些领域。我们可以用不寻常但令人惊叹的数学知识逗乐大家。其中一些例子可能非常简单,甚至什么都不需要解释就可以达到目的。还有一些例子会被认为很了不起,它们能够引导读者真正欣赏数学,因为也许他们在学生时代没能意识到这一点。通过这些简短的例子,我们希望能让你感受到数学领域所能提供的许多意想不到的和违反直觉的乐趣。
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大的反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯坦的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂、幽默生动、深入浅出,适合中等以上文化的广大读者阅读。
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末引进出版后,曾在我国引起很大反响,直接影响了众多的科普工作者和青少年读者。作者乔治?伽莫夫是美国著名物理学家、天文学家,同时也是一位科普作家,这本《从一到无穷大》是他的代表作。书中用生动的语言,将数学、物理和生物学等内容巧妙融合,并以一种通俗易读、充满趣味的方式呈现给读者,激发读者尤其是青少年对科学、身边世界乃至整个宇宙的兴趣。本版根据原书的最新版进行了修订,以全彩的设计,附上修复后的作者手绘全彩插图,旨在优化广大读者的阅读体验。