nbsp nbsp这本由数学家写成的小册子,充分地体现了数学文化、科学精神和学者应有的风骨。作者雷尼立意巧妙,在真实的三段古代背景里,假托苏格拉底、阿基米德和伽利略与其他人的对话,抽丝剥茧地探讨了数学是什么、数学的应用该如何展开,以及数学语言对科学的意义这三大主题。《数学对话录》语言优美、节奏和缓,用可读性很强的对话,慢慢将探讨带向深层,使读者既能体会思维提升的乐趣,又可以享受轻松适意的阅读过程。读雷尼的《数学对话录》,不需要任何专门知识。但是只有肯思考的人,才能循着他的引导,从*远的门外,拾级而登,渐入佳境,*后在科学的殿堂里找到自己能够欣赏的杰作。
本书坚持“古为今用”、“洋为中用”重视数学发展规律、数学思想和方法,以“尊重史实,突出重点”的原则选取史料,精选古今中外数学产生、发展的重要事件、重要人物和重要成果,将古代、近代和现代各国或地区的数学虫作简明、概括性的宏观介绍与评述。
大数据时代,人们在生产生活中收集了大量的高维复杂数据。在针对这些数据进行统计分析的过程中,构建一个简单高效的模型至关重要。一个简单的稀疏模型不仅具有很好的解释性,常常也具有很高的性能。本书的主要工作就是针对高维数据的稀疏统计建模研究。
《怎样解题:数学思维的新方法》经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了《怎样解题:数学思维的新方法》的甜头,他们在《怎样解题:数学思维的新方法》的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
朋友们,85×85=?你能瞬间算出这道数学题的答案吗?学习了本书所教授的印度吠陀数学的计算方法,2秒钟就可以给出答案。也许你会惊讶,“这是数学还是魔术?”但是,真的就有这么神奇! 印度吠陀数学的创始人巴拉蒂?克里希纳?第勒塔季在1911~1918年期间潜心研究印度古代吠陀经文,在此基础上重构了数学计算体系,并将其传播到世界各地。吠陀数学比一般的计算方法快10~15倍,其结构连贯、完美、准确且容易计算。理解了吠陀数学法则,便可以创造出自己的解题方法,也可将其运用于现代数学——代数、几何、三角函数、微积分等科目中。本书是以两位数的运算为例来阐述的,可谓是吠陀数学的入门篇。每天花十分钟做练习题,并把这些简单又神奇的法则熟记于心,这会成为以后进行熟练运算的基础。也会使你成为酷的数学达人!
教学是与教育相伴随的人类活动。随着社会的进步发展和对教育要求的不断提高,有效教学也日益成为人们关注的问题。有效教学的概念虽然是近些年来才在我国教育领域逐步流行起来,但从有效教学的理论层面看,它是一个与教学理论相伴生的隐性命题,因为,任何一种教学理论在学理追求上总是为有效教学辩护的,很难想象有哪一种教学理论将无效教学作为理论诉求。从这一角度看,任何教学理论都是有关有效教学的、理论。 当然,一种教学理论是否有效或者有效的程度,是要通过教学实践予以检验的。只是在检验理论的过程中,我们还需要判断理论实施的条件和边界问题,因为验证的结果与这些因素密切相关。在这个意义上,理论的有效性与其实施结果往往也不能简单地画上等号,在实际的教学改革中,理论与实践的关系是十分复杂的。本书的编写也
首先,本书从 r期状态随机概率转换矩阵 的数据,得到了 单期状态随机概率转换矩阵 的分析解,从而解决了由于时间跨度r存在而不能使用传统模型方法的问题。其次,本书对二维随机概率转换矩阵的开方进行了详细的分析,得到了矩阵开方可能存在 *性 和 存在性 的很多细节结果。*后,通过对间接估计量和直接估计量的比较,从理论推导和数值模拟两个角度得到了与一般直觉不一致的结论。
《解析几何的技巧(第4版)》主要内容包括:距离公式、平行四边形的顶点、过已知点的平行线、过已知点的垂线、同心圆、渐近线相同的双曲线、复数与旋转、三角形的心、法线式、一次式、表示直线的高次方程、过原点的曲线等。
在中学物理学习过程中,学生在获取知识的同时,还要重视从科学宝库中汲取思维营养,加强科学思维方法的训练。《中学生物理思维方法丛书》就是这样一套 授之以渔 的优秀辅导书。丛书每一册都以某一类或两三类思维方法为主线,在物理学史的恢宏长卷中,撷取若干生动典型的事例,把读者引入饶有兴趣的科学氛围中,然后围绕这些思维方法,就其在中学物理教学中的功能和表现,以及其在具体问题中的应用做较为深入、全面的挖掘,使读者能从物理学史和中学物理教学现实两方面较宽广的视野中,逐步领悟到众多思维方法的真谛。 丛书信息: ● 分析与综合 ● 守恒 ● 猜想与假设 ● 图示与图像 ● 模型 ● 等效 ● 对称 ● 分割与积累 ● 归纳与演绎 ● 类比 ● 求异 ● 数学物理方法 ● 形
冯跃峰著的《递归求解/中学生数学思维方法丛书》介绍数学思维方法的一种形式:递归求解。其中一些内容是本书 提出的,比如递归组、多维递归、递归不等式、固定元素、固定位置、剔除元素、剔除位置、“进”式归纳、“退”式归纳等,这是本书的特点之一。书中选用了一些数学原创题,有些问题还是 次公开发表,这是本书的另一特点。此外,书中对每一个问题,并不是直接给出解答,而是详细分析如何发现其解法,这是本书的又一特点。 本书适合高等院校数学系师生、中学数学教师、中学生和数学爱好者阅读。
内容同步人教版小学一年级教材,附加扫码跟写、听读功能。全书采用虚点线描写的形式,锻炼孩子的控笔能力,培养良好的书写习惯,为今后学习打牢基础。
本书用代数的视角,从自然数十进制的计数开始介绍 基本的两种运算(加法、乘法)及其基本法则。利用这两种运算的逆运算以及指数运算及其逆运算,用较短的篇幅系统地介绍由自然数到实数,再到复数的扩张,以及相关的数和多项式的代数运算。书中尤其阐述了十进制数的代数运算与多项式代数运算的高度统一。 本书适合小学高年级、中学生及其家长阅读,也可作为中学数学教师的参考书。
陈滨等编著的《混沌波形的相关性——相空间轨迹与混沌序列自相关特性》在简单介绍混沌及其研究方法和实际应用的基础上,研究了混沌的相空间轨迹结构同混沌自相关特性的联系。采用相空间方法,探讨了混沌时间序列的自相关的规律性,取得了一定的明晰、实用的研究成果:建立起混沌内部规律同其自相关的联系,论证了apas定理,并指出通过apas定理可以判断出自相关特性不好的序列的结构瑕疵,同时提出了针对这些瑕疵进行改良的方法,改善了序列的自相关性能。笔者进行了大量仿真对上述内容和理论作了证实。 《混沌波形的相关性--相空间轨迹与混沌序列自相关特性》还介绍了先前用弱结构法对混沌自相关特性初步改进的成果,也用apas定理对弱结构法作了解释;从实用角度出发,探讨了噪声及误差对混沌自相关和改进方法的影响。 《混沌
《历届美国大学生数学竞赛试题集:卷(1938-1949)》共分两编:编试题,共包括1~10届美国大学生数学竞赛试题及解答;第二编背景介绍,主要包括了素数模式以及Vandermonde行列式。 《历届美国大学生数学竞赛试题集:卷(1938-1949)》适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用。