本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
本书分练习题、答案或提示两部分,练习题内容涉及一元函数微积分学、空间解析几何、微分方程、多元函数微积分学、无穷级数,题型分为计算、证明及应用题(A类)、选择题(B类)、填空题(C类)三大类,共有1716道练习题。 根据这些年的教学实践和广大师生对本《练习题集》提出的希望与要求,我们对《练习题集》进行了一些修改,作为修订版予以再次出版。 在这次修订中,练习题的题型没有变化,主要是补充和修改了些习题,对初版编写和排印中的疏漏之处,进行了校正,并再次审核了全部习题答案。 修订后,A类题1100道,B类题300道,C类题350道,共计1750道练习题。
郑州轻工业学院数学与信息科学系编写的《高等数学学习指导与同步训练教程(第2版配同济第6版上下册)》为同济大学数学系编写的《高等数学》第六版的配套辅导教材,共分12章,章节的划分与第六版完全一致。每章内容由六部分组成:基本概念、性质与结论;典型例题分析;疑难问题解答;同步训练;自测题;同步训练及自测题参考答案与提示。书末附有2010-2011年全国硕士研究生入学统一考试数学试题及答案。 《高等数学学习指导与同步训练教程(第2版配同济第6版上下册)》可作为高等工科院校高等数学学习的辅导读物,也可作为教师教学的参考书,同时也是一本同步指导与训练教程,而且也可作为学生考研的系统复习用书。
为适应2l世纪对高等职业技术应用型人才的新要求,提升高等数学在技能和职业指导中作用,我们编写了这本具有高职特色的高等数学教材。 本书作为*高等职业教育基础课规划教材之一,创新点在于把学法融入读本中,把培养学生的职业精神和职业意识写进了数学教材中,突显每章节的技术性内容。 本书包括一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、向量与空间解析几何、几何级数、常微分方程、数学建模、数学软件Mathematica九个知识模块,全部学完学时不少于120学时。前二个知识模块学完后,就可以根据专业选择所需数学知识模块。本书注重对综合知识的应用,突出一定升学应试能力,对参加“专升本”考试具有一定指导意义。 本书可作为高职高专理工类和财经类各专业的通用教材,也可作为其他各专业的参考资料,
本书分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分和三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题又含 基本概念和内容提要 竞赛题解析 练习题 三个部分。书中竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。另外,从近几年的硕士研究生入学考试试题中也挑选了部分好题,丰富了本书的内涵。
本书是贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的要求精神,按照国家非数学类专业数学基础课程教学指导委员会*提出的“丁科类本科数学基础课程教学基本要求”,并根据高等学校培养高级应用型人才的目标编写而成的。全书分为上、下两册。上册分七章,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程。下册分五章,内容包括空间解析几何与向量代数、多元函数微分及其应用、重积分、曲线积分与曲面积分和无穷级数。 本书在内容上力求适用、够用、简明、通俗;在例题选择上力求全面、典型,难度循序渐进;在论述形式上则力求详尽、易懂。每节后都附有比较全面的基础性习题与综合性习题。为满足读者进行阶段性复习与自我检测的需要,在每一章末安排有自测题。书后附有
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
《高等数学》这套教材是根据成人教育、网络教育的相应大纲进行编写的,这套教材作为成人教育、网络各专业本科生、专科生以及专升本等多个层次的学生“高等数学”课程的学习与辅导教材。全书分为上、下两册,共分12章。上册包括:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,定积分的应用,常微分方程等内容。刘丁酉、赵燕芬编著的《高等数学(下)》包括:向量代数与空间解析几何,多元函数微分学,重积分,曲线积分与曲面积分,无穷级数等内容。每章节后都配有适量的习题和复习题,为方便读者自学,这套教材专门配置了《高等数学学习指导》。《高等数学(下)》注重以学生自学为主的特点和学习基础理论,表述尽量做到由浅入深、思路清新透明,尤其注重引导学生对学习难点的准确把握,基本概念的阐释尽
本书是《大学数学》(上、下册)的配套学习材料,内容编写与教材同步,是帮助读者学习教材内容的工具。主要内容包括:一、核心内容概要——对各章节的主要内容进行了简单的归纳;二、典型例题——精心编写的例题对解答常见的习题能起到一种示范效应;三、从错误中总结经验,从而提升解题能力;四、答案与习题选解——给出了全部习题参考答案及部分习题的详细解答。后,各章末对每章的复习题和自测题给出了详细的解答,便于读者查阅参考。 本书以使用“大学数学”(上、下册)教材的学生为主要对象,也可作为使用该教材的教师的教学参考书。
本书是2l世纪高等学校数学系列教材之一,全书遵循高等教育规律,突出高等职业教育的特点, 注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章, 内容包括: 函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。 本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。 与本书配套的辅助教材有《高等数学练习册》、 《高等数学学习指导》。本书可以作为高职高专各类专业通用数学教材,也可以作为成人高校、网络教育及相关科技人员的
高等数学是理工科院校的一门重要的基础课。我们依据理工科各专业的培养目标和特点,按照**制定的高等数学课程教学大纲的要求,为帮助读者在数学概念、计算技能和数学思维方面得到充分的训练,编写了这本参考书。 本书是按照同济大学应用数学系所编的《高等数学》(第五版)的章节顺序编写,共12章,每章分2个部分: (1)重点、难点全析:对本章的重点与难点进行归纳总结;同时归纳重要的概念、内容与公式。 (2)习题全解:对同济大学数学教研室编写的《高等数学》的第五版和第四版的课后习题做了详细解答,以便读者掌握解题技巧,并从中掌握好基本概念。
本书遵循*高等院校非数学类专业数学基础教学指导分委会修订的“工科类本科数学基础课程教学基本要求”,传承高等数学的结构体系,体现新形势下教材改革的精神,面向普通高校人才培养的需要,集作者多年教学实践的经验编写而成。本套书分上、下两册,上册内容为一元函数微积分和空间解析几何与向量代数(共7章),下册内容为多元函数微积分、级数和常微分方程(共5章)。书末附有习题参考答案。 本书可作为高等院校工学、经济学等专业的教材,也可作为相关教师、工程技术人员用书和参考书。
本书依据*《高等数学课程教学基本要求》(经管、文科类)编写,可满足经管、文科类本科各专业对高等数学的教学需求。 本书分上、下两册出版,上册包括:函数、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用等内容,打8号的内容可根据不同专业选学,书末附有积分表,习题答案与提示。 本教材强调从实际应用的需要(实例)出发,加强数学思想和数学概念与社会经济实际问题的结合,淡化了深奥的数学理论,强化了几何说明,结构简练、合理。每章都有本章小结、复习题和自测题。此外,本书还配有辅导教材《高等数学学习指导与习题解答》(经管、文科类)。 本教材可供高等院校经管、文科类本科专业的学生学习使用,也可供高校教师和科技工作者使用。
高等数学是高等院校的一门重要基础课,也是全国工学硕士研究生入学考试的必考科目之一。由于受课时的限制,该课程无论在内容的广度、深度上还是在解题方法上,均不可能全面展开讲解。为了帮助一些学有余力的学生提高数学水平,我们编写了《高等数学考研冲刺》一书。 本书包括两大部分:部分共十二章,是按同济大学版《高等数学》的知识系统编写的。每章结合典型例题,对该章的基本题型和解题方法进行了较为全面的讨论,对难度较大的题型,做出了思维定式处理,目的是为了使大家在较短时间内加深对数学的理解、掌握解题技巧、提高解题能力。每章均配有练习题和答案,供大家自我检测。第二部分是附录。附录给出了十二、十三、十四届北京市大学生问E数学专业)数学竞赛本科甲、乙组试题及解析和2002~2004年考研数学——高数部分试题及答