李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《数论经典著作系列:解析数论基础》以解析数论的三个问题:素数分布、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法本书的特点是少而精,叙述和证明简洁阅读本书仅需要初等数论、微积分及复变函数基础知识,书中有不少习题,其中一些是近代解析数论的最重要的成果,读者可通过这些习题了解近代解析数论的研究领域。本书可供大专院校数学系师生、研究生及有关的科学工作者阅读
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
本书是两卷本计数组合学基础导论中的卷,适用于研究生和数学研究人员。本书主要介绍生成函数的理论及其应用,生成函数是计数组合学中的基本工具。 本书共分为四章,分别介绍了计数(适合高年级的本科生),筛法(包括容斥原理),偏序集以及有理生成函数。本书提供了大量的习题,并几乎都给出了解答,它们不仅是对本书正文的极大扩充,而且对书中没有直接涉及的许多领域提供了入门途径。本书的选材覆盖了计数组合学中应用最为广泛以及与其它数学领域关联最为密切的部分。 中文版根据英文修订版译出,包括内容的更新和习题的补充。 对于希望把组合数学应用到工作中的研究生和数学工作者来说,本书是一本著作。
Almost two decades have passed since the appearance of those graph theory texts that still set the agenda for most introductory courses taught today. The canon created by those books has helped to identify some main fields of study and research, and will doubtless continue to influence the development of the discipline for some time to e. Yet much has happened in those 20 years, in graph theory no less than elsewhere: deep new theorems have been found, seemingly disparate methods and results have bee interrelated, entire new branches have arisen. To name just a few such developments, one may think of how the new notion of list colouring haridged the gulf between invuriants such as average degree and chromatic number, how probabilistic methods and the regularity lemma have pervaded extremai graph theory and Ramsey theory, or how the entirely new field of graph minors and tree-depositions harought standard methods of surface topology to bear on long-standing algorithmic graph problems.