本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
《新编统计基础同步训练/高等职业教育“十二五”规划精品教材·高等职业院校财经类专业系列教材》是根据高职高专“十二五”规划精品教材《新编统计基础》编写的配套教学用书。 《新编统计基础同步训练/高等职业教育“十二五”规划精品教材·高等职业院校财经类专业系列教材》注重培养学生岗位实务操作能力,编排了统计分析方法与技巧的多种形式的练习与训练题。其内容新颖生动、趣味性强,以提高学生学习的积极性、主动性,便于学生更好地掌握所学知识。
本书是从西北工业大学近年来在国际和全国数学建模竞赛中精选出的近20篇获得一等奖的论文加工整理而成的.所选择的论文都是最有代表性的,每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建立与求解、模型的分析与检验、模型的评价与改进等内容.论文几乎完整地保持了参赛论文的原貌.同时每篇论文后给出了比较细致的点评.书后附录中提供了数学建模竞赛部分赛题. 本书可供参加全国数学模型竞赛和国际数学建模竞赛的大学生学习和阅读,也可以作为数学建模课堂教学和竞赛培训的案例教学,也可供从事相关学科教学和研究工作的科技人员参考.
《数学建模》根据作者陈光亭和裘哲勇多年的教学经验编写而成,主要内容包括数学规划与组合优化建模、方程建模、方法建模、模糊和灰色系统建模,以及常用数学软件与算法等,涵盖了数学建模常用的方法和工具。每部分内容安排上不追求知识的系统性和完整性,更多地以大量建模问题实例和涉及面较广的背景素材引出需要的方法,并在此基础上简要介绍相关基础知识和基本方法的使用。各部分内容之间具有相对独立性,有利于教师在教学中根据不同的需求以及教学时数的多少进行取舍。 《数学建模》可作为一般院校大学生 数学建模 课程的教材,也可作为指导大学生数学建模竞赛的培训参考书,以及供相关科技工作者参考使用。
《用Excel学博弈论》内容简介:你是不是正在学习博弈论?你是不是正为博弈论中复杂的相互关系头痛不已?你是不是想学好博弈论从而更好地应用到工作与学习中?那么,对你来说,《用Excel学博弈论》再适合不过了。它将Excel应用到博弈论的学习当中,通过详细的情景说明,让你边使用Excel边学知识,只要你跟着本书的思路走,那么你肯定能在较短的时间内掌握博弈论相关知识!
当下社会,人际交往日趋频繁,人们越来越相互依赖又相互制约,彼此的关系臼益博弈化了不管懂不懂博弈论,你都处在这世事的弈局之中,都在不断地博弈着我们日常的工作和生活就是不停的博弈决策过程每天都必须面对各种各样的选择,在各种选择中进行适当的决策在单位工作,关注领导、同事,据此衡量自己所需采取的适当对策平日生活里,结交哪些人当朋友,选择谁做伴侣,其实都在博弈之中这样看来,仿佛人生很累,但事实就是如此,博弈就是无处不在的真实策略“游戏” 本书用轻松活泼的语言对博弈论的基本原理进行了深入浅出的探讨,详细介绍了囚徒困境、纳什均衡、智猪博弈等经典博弈模型的内涵、适用范围、作用形式,同时对博弈论的方法和策略在政治、管理、营销、信息战及日常工作和生活中的应用作了详尽而深入的剖析,堪称一部博弈
《无知的博弈:有限信息下的生存智慧》全书用通俗易懂的语言,结合来自经济、政治、历史和日常生活中的大量例子,生动地展示了在不完全信息局势下个人如何做出的决策。包括如何在不确定环境中决策(与上帝博弈),如何在博弈中操纵信息(信号传递、信号干扰、信息隐藏),如何设计机制去探测对手的类型(信息甄别)。《无知的博弈:有限信息下的生存智慧》充分展现了有限信息下的博弈策略和智慧较量,并让我们更为深刻地洞察到社会生活某些表象背后的真相。
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。
《无知的博弈:有限信息下的生存智慧》全书用通俗易懂的语言,结合来自经济、政治、历史和日常生活中的大量例子,生动地展示了在不完全信息局势下个人如何做出的决策。包括如何在不确定环境中决策(与上帝博弈),如何在博弈中操纵信息(信号传递、信号干扰、信息隐藏),如何设计机制去探测对手的类型(信息甄别)。《无知的博弈:有限信息下的生存智慧》充分展现了有限信息下的博弈策略和智慧较量,并让我们更为深刻地洞察到社会生活某些表象背后的真相。
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。
洛杉机奥运会商业化运作破天荒的成功意味着什么? 杰克逊·韦尔奇所统帅的通用电器,为什么会成为世界制造业的典范? 比尔·盖茨麾下的微软,为什么能执全球软件之牛耳? …… 如果你细心地回顾一下历史,细心地考察一下现实,你就会发现,这样的问题无穷无尽。 那么,所有这些问题究竟有没有共同的内在的规律?能否从中发现新的、科学的、可应用的理论?答案是肯定的。本书试图通过对人类社会各种法人活动的运动轨迹的探究,来深刻地揭示出一个运筹范畴中的科学体系:即法人运筹金字塔理论,它包含法人的价值取向、法人对体制机制的设计运用以及法人如何进行战略构筑和资源整合这四个层面。
《运筹学:理论、模型与Excel求解》既介绍了运筹学的基本理论、方法和模型,又探讨了它们在Excel电子表格中的建模和求解,还包括了大量来自经济管理实践的案例分析。全书共分10章,系统地介绍了线性规划及其单纯形算法、对偶理论与灵敏度分析、整数规划、目标规划、网络计划、决策分析以及博弈论的主要理论和方法,并通过实例介绍了运筹学基本模型在Excel电子表格中的建模和求解过程。本书致力于理论方法与计算机软件的有机结合,通过对大量案例的建模和分析,力求做到理论、方法阐述简单明了,软件操作方便可行,案例分析符合实际。每章都配有数量的习题以帮助读者熟练掌握运筹学的基本理论、方法和模型,并为进一步的深入学习奠定基础。本书既可作为高等院校经济和管理类专业的本科生、工商管理硕士(MBA)的教材,也可作为经济和管理类其
《运筹学:理论、模型与Excel求解》既介绍了运筹学的基本理论、方法和模型,又探讨了它们在Excel电子表格中的建模和求解,还包括了大量来自经济管理实践的案例分析。全书共分10章,系统地介绍了线性规划及其单纯形算法、对偶理论与灵敏度分析、整数规划、目标规划、网络计划、决策分析以及博弈论的主要理论和方法,并通过实例介绍了运筹学基本模型在Excel电子表格中的建模和求解过程。本书致力于理论方法与计算机软件的有机结合,通过对大量案例的建模和分析,力求做到理论、方法阐述简单明了,软件操作方便可行,案例分析符合实际。每章都配有数量的习题以帮助读者熟练掌握运筹学的基本理论、方法和模型,并为进一步的深入学习奠定基础。本书既可作为高等院校经济和管理类专业的本科生、工商管理硕士(MBA)的教材,也可作为经济和管理类其
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。 《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
随着社会的不断进步,人们的生活也变得越来越丰富而复杂,太多的问题要求人们作出理性的选择,面对纷繁多变的世界,有时难免深感无所适从,而博弈论的许多原理正可以为人们排忧解难。本书将原本深奥的博弈论通俗化、简单化,同时通过大量典型的实例,从处世、职场、管理、营销、消费、投资、谈判、爱情、家庭等方面,就博弈论对社会和人们日常生活的制约作用和影响效力作了详尽而深刻的剖析。通过本书,读者可以了解囚徒困境、纳什均衡、零和与非零和博弈、重复博弈、多人博弈、逆向选择等博弈论的基本模式及其规则,掌握博弈论的精义,提高自己对社会现象的洞察能力和决策能力,并将博弈论的原理和规则运用到自己的人生实践和商务活动中,在面对问题时作出理性选择,减少失误,突破困境,取得事业和人生的成功。
本书是一本着重实际应用又兼顾理论要求的运筹学教材. 主要内容包括线性规划、整数规划、目标规划、非线性规划、动态规划及决策分析. 各章附有习题,书末有习题解答和提示. 本书对数学基础要求较低,适用专业范围广;基本概念与基本理论阐述清晰透彻,密切联系实际,各种算法推导详细,配有丰富实用的例题. 本书可作为工程硕士研究生以及经济管理等非数学专业大学生、研究生的教材,也可供科技人员和管理人员参考。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”,运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程》共分13章,内容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案.附录介绍了当今流行的计算化问题的LNCO软件。 《运筹学教程》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。