正如宾默尔在这本《博弈论教程》中用大量例子和应用充分展示的那样,博弈论有利于弄懂人类各种各样的互动关系。这本新书是替代宾默尔前一本博弈论教材《娱乐和博弈》(Fun and Games)的。这本充满乐趣的博弈论入门教材适合高年级本科生或低年级研究生,着重回答这样三个问题:什么是博弈论?博弈论如何应用?博弈论为什么是正确的?《博弈论教程》也是认真讨论这三个问题,又不过分数学化的一本书。《博弈论教程》的主题包括议价理论、不竞争、合作博弈、贝叶斯决策理论、不完全信息博弈、机制设计,以及拍卖理论。《博弈论教程》适合许多专业的学生,包括经济学、数学和哲学专业。为了方便其他专业学生的学习,在必要的地方会对所有三个学科的标准专题作一些回顾。《博弈论教程》的一个重要特征是配有大量习题,而且答案是可得的。
朱顺泉和苏越良编著的《管理运筹建模与求解——基于Excel VBA与MATLAB》向读者介绍常用的管理运筹学模型的建立及其计算机软件的实现方法,主要包括线性规划、整数线性规划、目标规划、动态规划、网络规划、非线性规划、数据包络分析、模拟决策、人工神经网络、遗传算法等模型及使用Excel,ExcelVBA和MATLAB等软件对上述模型进行求解的方法和步骤。 《管理运筹建模与求解——基于ExcelVBA与MATLAB》特点是案例丰富,贴近实际,具有很强的实用性和可操作性,易于读者理解和自学。《管理运筹建模与求解——基于ExcelVBA与MATLAB》可作为经济管理类本科生及攻读MBA、工程硕士等专业学位的研究生学习相关课程的教材或参考书,也可供相关专业人士参考。
数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过的几类主要数学模型进行了归纳总结。
"Stochastic optimization in continuous time"(AuthorFwu-RanqChang)is a rigorouut user-friendly book on the application ofstochastic control theory to economics. A distinctive feature ofthe book is that math-ematical concepts are introduced in alanguage and terminology familiar to graduate students ofeconomics.
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。
杨纶标和高英仪等编著的《模糊数学原理及应用》简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。《模糊数学原理及应用》可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。
本书是行为领域的经典之作,主题是合作的产生和进化。作者以组织的两轮“重复囚徒困境”竞赛为研究对象,结果发现在两轮竞赛中胜出的都是最简单的策略“一报还一报”。这一策略简洁明晰,具有善良性、宽容性、可激怒性和策略性,其出色的竞赛表现为我们了解个人、组织和国家间合作产生和进化提供了积极的前景,其结论在社会科学的诸领域产生了广泛深刻的影响,被广泛征引。