《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。 《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。 《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技
本书定位于夯实数学建模基础,采用主流编程方法和简洁代码实现常用的数学建模算法,以案例为导向,围绕数学建模知识体系展开。全书分5篇,共11章。前两章是数学建模基础篇,包括数学建模介绍、数学建模的一般流程(初等模型)、如何从算法到编程实现(层次分析法与自定义函数);接着按算法板块组织内容,包括微分方程模型篇(人口模型、传染病模型)、优化模型篇(规划模型、投资优化策略、优化模型进阶)、评价模型篇(经典评价模型、模糊理论)、预测模型篇(常规预测模型、时间序列分析)。本书有配套源码资源和电子课件。 本书可作为高等院校数学建模的入门教材,也可作为数学建模指导教师的参考资料,还可作为其他相关行业人员、科研人员使用数学模型解决实际问题的参考用书。
《因果推理:基础与学习算法》从概率统计的角度入手,分析了因果推理的假设,揭示这些假设所暗示的因果推理和学习的目的。本书分别论述了两个变量和多变量情况下的因果模型、学习因果模型及其与机器学习的关系,讨论了因果推理隐藏变量有关的问题、时间系列的因果分析。 《因果推理:基础与学习算法》可作为高等院校人工智能和计算机科学等相关专业高年级本科生和硕士研究生的教材,也可供研究机器学习、因果推理的技术人员参考。
本书围绕黎曼流形优化发展过程中的理论前沿与热点问题,比较全面和系统地介绍了黎曼流形优化的基本原理和应用实践的最新成果。全书共7章,分为理论与应用两个部分。理论部分包括黎曼流形内涵、常用黎曼流形及其几何结构、收缩、低秩流形收缩、黎曼最速下降法、黎曼牛顿法、黎曼共轭梯度法、黎曼信赖域法和黎曼拟牛顿法等内容。应用部分包括鉴别性结构化字典学习、多源多波段图像融合、特征值问题求解(单位球面约束的Rayleigh商最小化、Stiefel流形上的Brockett函数最小化)等。本书内容新颖、体系完整,具有系统性、实用性、先进性和前瞻性。
本书介绍在嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等。并在此基础上介绍了信号处理层面的优化,包括AI推理算法及基于神经网络的AI算法训练-推理联合的优化理论与方法。其中信号处理层面优化包括了基于线性代数的快速近似算法、基于多项式的快速卷积构造技术、基于数据二进制结构的快速乘法算法等;在AI推理层面,介绍了机器学习推理模型共性结构、运算图中各个算子的计算优化途径;另外对基于神经网络AI算法,阐述了如何将推理阶段的运算量约束以及底层数据量化约束加入训练代价函数,从算法训练端减少运算量以提升AI嵌入式系统的运行效率;此外本书还通过多个自动搜索优化参数并生成C代码的例子介绍了通用的嵌入式环境下机器学习
本书系统地介绍了X86、龙芯、飞腾架构下的UEFI应用和驱动开发,系统调试专家、《软件调试》作者张银奎,以及UEFI专家、《UEFI原理与编程》作者戴正华联袂推荐。 本书以项目开发为导向,采取 近实战,多实例 的方式,细致深入地介绍了UEFI应用和驱动开发相关的知识。 第1~3章,介绍了UEFI系统的组成、启动过程,在各种操作系统中搭建和调试开发环境的方法,以及UEFI应用和驱动开发的基本方法。 第4~10章以实际的开发实践为索引,介绍了图形图像开发、汉字显示、GUI构建、访问PCI/PCIE设备、访问SMBus设备、访问串口设备、实现USB通信和网络通信等内容。这部分以贴近实际开发的方式来构建实例,并深入剖析相关硬件协议及其在UEFI上的实现。 第11章和第12章,讲解了龙芯和飞腾架构,以及如何在这两类国产处理器上进行UEFI软件开发。
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了*基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算法
内容介绍 本书基于Python全面介绍了机器学习在信贷风控领域的应用与实践,从原理、算法与工程实践3个维度全面展开,包含21种实用算法和26个解决方案。 作者是智能风控、人工智能和算法领域的专家,曾在多家知名金融科技企业从事风控算法方面的研究与实践,经验丰富,本书得到了风控领域9位专家的高度评价。 全书一共8章,每个章节都由问题、算法、案例三部分组成,具有系统性和实战性。 第1-2章讲解了信贷业务的基础知识以及常用的规则引擎、信用评估引擎的建模方法。 第3章以项目冷启动为背景,讲解了风控领域应用广泛的迁移学习方法。 第4-5章介绍了幸存者偏差与不均衡学习中所使用的无监督学习与半监督学习方法。 第6章阐述了无监督的异常识别算法,该算法常用于数据清洗与冷启动项目,是反欺诈引擎中常用的个体欺诈检测方法。 第7章分享了一
这是一本可帮助读者深度理解并全面掌握ClickHouse运行原理并进行实践开发的工具书,涵盖了ClickHouse的时代背景、发展历程、核心概念、基础功能、运行原理、实践指导等多个维度的内容,尤其是在ClickHouse*核心的部分 MergeTree表引擎与分布式方面,书中对其实现原理和应用技巧进行了详细解读。 本书采用浅显易懂的语言 大量演示案例 大量示意图例的形式呈现,以求让读者在*短的时间内,以*舒服的方式,获得*核心的知识。本书的理论观点来自作者在OLAP领域10余年的工作思考与总结;功能与实操的素材来自作者在工作中对ClickHouse的深度应用与实践;原理解析部分的素材来自对大量专业文献的钻研与源码级的调试与解读。 本书在逻辑上分为三大部分: 第1~2章从宏观的角度出发,描述了时代背景、ClickHouse的发展历程及其核心特点。其中,对MOLAP、ROLAP和HORAP三
本书由具有丰富编程竞赛经验的作者执笔撰写,荣获日本“2021年IT工程师图书特别大奖”。作为一本算法和数据结构的入门书,本书内容充实、深入浅出,包含了来自知名编程竞赛平台AtCoder的丰富例题和大量配以详细注释的C 代码片段,不仅系统讲解了常见的各类算法,而且还通过图解、代码和思考题的方式,致力提高读者的算法实践能力和问题解决能力。因此这既是一本入门书,能够激发初学者对算法的兴趣,又是一本注重实践的书,让想成为算法高手的读者可以在深入理解算法和数据结构的基础上,快速掌握编程思维,终身受用。 本书既适合初学算法的读者,也适合希望深入掌握各类实用算法设计技术的读者阅读和参考。
《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技术
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,*部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的 百面 精
本书主要关注如何构建高能效具有学习能力的脉冲型神经元网络硬件,并且提供建立具有学习能力的脉冲型神经元网络硬件协同设计、协同优化方法。完整地描述从高级算法到底层硬件实现的细节。本书同样涵盖了脉冲型神经元网络中的许多基础知识和关键点。 本书从对脉冲型神经元网络的概述开始,讨论基于速率的人工神经网络的应用和训练,介绍实现神经网络的多种方法,如通用处理器和专用硬件,数字加速器和模拟加速器。同时展示了一个为能适应神经网络动态编程而建立的高能效加速器,验证脉冲神经网络的基础概念和流行的学习算法,简介脉冲神经网络硬件。后面的章节为读者介绍三个实现前述章节学习算法的设计案例(两个基于传统CMOS工艺,一个基于新兴的纳米工艺)。本书的结尾对脉冲型神经元网络硬件进行总结与展望。
本书针对推荐系统中的二部图、社交网络和知识图谱的图结构模式,研究基于图表示学习的深度推荐系统。通过挖掘图信息中的隐性关系和高阶关系,使用图学习的方式探索用户和产品的潜在关联,弥补相关推荐系统研究在挖掘用户之间或者产品之间隐性关系方面的不足,形成一系列合理而且有效的推荐技术。增加推荐系统输入的多样性,运用社交网络和知识图谱等辅助信息,缓解推荐系统目前面临的 数据稀疏 、 冷启动 等问题,提高推荐系统的准确性和多样性,为推荐系统技术的发展提供可参考的方向。
这是一部从技术原理、工程实践和进阶提升3个维度讲解Spring Cloud微服务架构与开发的著作。 作者在Spring Cloud微服务领域有丰富的工程实践经验,它将带领读者零基础入门Spring Cloud微服务,并快速掌握动手实践能力,*终进阶为Spring Cloud微服务领域的技术达人。 全书共21章,分为4个部分: *部分准备篇(第1~2 章) 首先对微服务和Spring Cloud的概念、优劣势、功能模块等做了整体性的介绍,然后演示了如何搭建Spring Cloud的开发环境,*后对Spring Boot做了详细的介绍。 第二部分基础篇(第3~7 章) 对Eureka 注册中心、客户端负载均衡 Ribbon、声明式 REST 客户端 Feign、Hystrix服务容错处理、API 网关等Spring Cloud的重要模块的技术原理、配置、使用等做了详尽的讲解。 第三部分实战篇(第8~14 章) 对微服务架构中的普遍问题给出了实战解决方案,包括选择配置中心、自
本书偏重于实战,面向UEFI的爱好者和使用者。全书共12章,大致可以分为三部分。%26amp;lt;br%26gt;1.第1部分为介绍UEFI的基础框架,搭建开发和调试环境,并熟悉代码框架的搭
本书基于ANSYS Workbench软件平台,详细介绍了结构动力学仿真分析计算方法和技术应用。首先讲解了ANSYS Workbench工程数据、网格划分、Mechanical通用设置的使用方法,然后对基本模态分析、循环对称模态分析、线性扰动分析、谐响应分析、子结构CMS法分析、响应谱分析、随机振动分析、刚体动力学分析、瞬态动力学分析、显式动力学分析、转子动力学分析、拓扑优化与设计、疲劳分析等各种分析类型一一进行说明。 对每种结构动力学分析类型的讲解中,首先介绍其基本理论,其次对ANSYS Workbench相关分析模块的仿真建模方法、分析设置流程中的具体选项进行详细说明,最后给出相应的结构动力学工程案例进行操作流程演示和结论评价。 本书适合从事结构设计、分析、优化的工程技术人员,以及CAE仿真分析爱好者阅读,同时适合机械、材料、汽
2011 年,C++标准委员会发布了ISO C++ 标准的一个重要修订版,即C++11 ,揭开了C++发展的新篇章。目前,许多程序设计竞赛和相关考试都已经提供了支持C++11 程序运行的编译器。本书的代码完全采用C++11 的语法进行编写,并力求帮助读者养成一种良好的C++11 代码编写风格,在程序设计竞赛和相关考试中能够快速而准确地编写代码。 除了介绍C++11 新特性之外,本书还会详细介绍各类基础的数据结构和算法。本书的具体内容包括5 个部分:C++11 基础、C++11 标准库简介、算法基础、数据结构基础、C++标准库进阶。本书主要面向计算机专业零基础的学习者,特别适合作为学习C++语言、数据结构与算法的入门书籍,也可作为计算机专业研究生入学考试复试上机考试、各类算法考试和算法竞赛的辅导书籍。 (责任编辑邮箱:jinacmp@163.com)