《数值分析》介绍现代科学与工程计算中常见的数值计算方法及理论.《数值分析》内容包括:数值计算的误差和基本原则、线性方程组的直接解法和迭代解法、非线性方程(组)的数值解法、矩阵特征值问题的数值解法、插值法、函数逼近与*线拟合、数值积分与数值微分和常微分方程初值问题的数值解法.《数值分析》既注重数值计算方法及理论,又注重数值计算方法的实用性,主要算法都给出了数值实例和Python程序实现,在书末以二维码的形式呈现,感兴趣的读者可以下载源代码进行学习.每章章末配备了适量的练习题和上机实验题,书末附有部分习题的参考答案.
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。全书分为三部分。*部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests等经典算法,平均、投票和Stacking等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展。第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习,以及提升可理解性方面的进展。此外,本书还在每章中的 拓展阅读 部分提供了相关的进阶内容。本书适合对集成学习方法感兴趣的研究人员、学生和实践者阅读。
大多数软件开发人员在复杂的代码上浪费了大量的时间。《整洁代码的艺术》提出的九大原则将教会您如何编写清晰、可维护且功能完备的代码。本书的指导原则很简单:缩减和简化,将精力投入到重要的工作上,省下大量的时间,卸下代码维护的重担。 热销书作者克里斯蒂安 迈尔在本书中利用他的经验帮助许多程序员完善他们的编码技能。他给出专业建议和真实例子,展示如何:利用80/20原则,专注于重要任务 要紧的那20%代码;避免孤立编码,创建小可行产品,获得早期反馈;编写整洁、简单的代码,排除混乱;避免导致代码过度复杂的过早优化;平衡您的目标、能力与反馈,达到高产出的心流状态;应用 做好一件事 哲学,极大地提升代码功能;利用 少即是多 哲学,设计有效用户界面;用 专注 原则贯穿所学的这些新技能。 本书采用Python作为示例语言,但
哇,编程!跟小明一起学算法这本书融入了游戏设计思想,通过游戏攻关的方式,介绍各种算法的原理和应用。全书共分8章,具体包括排序算法、穷举算法、递归算法、回溯算法、贪心算法、分治算法,栈、队列、树三种数据结构,动态规划算法,图论相关算法等内容。
在编写代码时,每位软件专业人士都需要对算法有充分的理解。在这本实用性极强的著作中,作者对一些关键的算法进行了详实的描述,可以有效地提高用各种语言编写代码的质量。软件开发人员、测试人员和维护人员可以在本书中学会如何使用算法,以创造性的方式解决计算性问题。 本书各章内容前后衔接紧密,环环相扣,用醒目的图表有条不紊地展示了一些核心概念,并对书中介绍的每种算法的性能进行了分析。在每一章的后,读者需要应用在该章所学习的知识,解决一个新颖的具有挑战性的问题,就像在参加技术面试。 在本书中,读者将会: 学习计算机科学和软件工程中非常重要且基本的算法; 学习高效解决问题的常用策略,包括分治法、动态规划等; 使用大O表示法对代码进行分析,评估它的时间复杂度; 在算法中使用现有的Python程序库和数据
本书是作者对柔性作业车间调度研究成果的系统总结。在车间实际生产过程中,工件在设备上的装卸调整及其在不同设备间的运输等辅助作业会对生产调度产生较大影响,因此,本书通过对考虑调整时间、运输时间等辅助时间约束的柔性作业车间调度问题进行研究,并设计改进遗传算法、改进模因算法以及混合优化算法对不同问题进行求解,最后结合车间的实际生产数据进行实例验证与分析,为制造企业提供参考。本书可作为高等院校智能制造工程、工业工程、机械设计制造及其自动化等专业学生的教学用书,也可作为研究车间调度、群体智能、优化算法等相关领域与专业的研究生及研究人员的参考用书。
个性化推荐能够根据用户的历史行为显式或者隐式地挖掘用户潜在的兴趣和需求,并为其推送个性化信息,因此受到研究者的追捧及工业界的青睐,其研究具有重大的学术价值及商业应用价值,已广泛应用于大型电子商务平台、社交平台、新闻客户端以及其他各类旅游和娱乐类网站中。本书内容丰富,较全面地介绍了基于协同过滤的推荐系统存在的问题、解决方法和评估策略,主要内容涉及协同过滤推荐算法中的时序技术、矩阵分解技术和社交网络信任技术等知识。本书可供从事推荐系统、人工智能、机器学习、模式识别和信息检索等领域的科研人员及研究生阅读、参考。
本书以*推出的MATLAB 2016a软件为基础,详细介绍了各种智能算法的原理及其MATLAB在智能算法中的应用,是一种MATLAB智能算法设计的综合性参考书。全书以智能算法原理及MATLAB应用为主线,结合各种应用实例,详细讲解了智能算法的MATLAB实现。全书分为两部共13章,*部分首先从人工智能概述开始,详细介绍了神经网络算法、粒子群算法、遗传算法、模糊逻辑控制、免疫算法、蚁群算法、小波分析算法及其MATLAB的实现方式等内容; 第二部分详细介绍了智能算法的工程中的应用问题,包括模糊神经网络在工程中的应用、遗传算法在图像处理中的应用、神经网络在参数估计中的应用、基于智能算法的PID控制和智能算法的综合应用等。本书以工程应用为目标,内容深入浅出,讲解循序渐进,既可以作为高等院校理工科相关专业研究生、本科生的教材,也可作为广大科研工程技
开发者在一次接触云计算的时候往往感到非常困难。既需要学习分布式系统,熟悉诸如容器和函数之类的技术,还得知道如何将这些东西组合在一起,过程实在令人生畏。通过这本实用的指导书,你将了解构建云原生应用程序的模式以及消息传递、事件处理和DevOps等常见任务的实践。 作者Boris Scholl、Trent Swanson和Peter Jausovec为你阐述了现代云原生应用程序的架构模块。你将了解如何使用微服务、容器、无服务器计算、存储类型、可移植性和函数。你还将探索云原生应用程序的基础知识,包括如何设计、开发和操作它们。
本书针对加工制造企业生产加工过程中面临的计划外新任务到达和随机机器故障两类典型干扰事件,在充分考虑实际加工过程中的环境特性和生产因素的基础上,提出相应的生产系统干扰应对模型和求解算法,进而为决策者提供多个可以在加工成本和系统扰动之间进行权衡选择的科学合理的干扰应对方案。作者将所提出的模型和算法在大连市某集装箱制造企业的生产系统干扰应对过程中进行了成功应用。所述内容为加工制造企业的干扰事件应对提供了决策支持。