本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停留在浅尝辄止,也不相信宣称的人人都能用ChatGPT赚钱。
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。 本书通过AI 小白 小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。 本书适合对AI 感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。
这是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。 通过阅读本书,你将: 透彻理解与深度学习相关的机器学习算法及其实现 学会主流图像处理领域神经网络的结构 掌握加速器运算子系统和存储子系统的设计 摸清加速器设计中遇到的具体问题及其解决方法 了解NPU架构需要考虑的控制通路和数据通路
本书在介绍ROS总体框架和理论要点的基础上,讲解ROS的通信机制、常用组件和进阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特点和使用方法,剖析ROS的发展方向。
加里.卡斯帕罗夫在1997年对战IBM公司的超级计算机 深蓝 是科技史上的一个分水岭。这是人工智能时代的一个新纪元:在这场*激烈的比赛中,首次出现了能够击败国际象棋世界冠军的机器。那一刻是人类-一个多世纪以来孜孜以求、勇攀科技高峰的结晶。在这本突破性的书中,卡斯帕罗夫第次揭示了他惊人的一面,描述了他在面对*为强大的对手时的谋划与布局,在全世界的注视下奋勇争先,并叙述了通过国际象棋程序的发展考察人工智能的发展历史。 卡斯帕罗夫用他无与伦比的经验审视了智能机器的未来,并预见到它的可能性。许多批评家谴责人工智能是一个巨大的威胁,特别是对某些特定人群的工作岗位而言。卡斯帕罗夫在本书中强有力地论证了:人类不应害怕我们*为非凡的创造物,而是应与之协作,达到新的高度。
数字技术的飞速发展正在以前所未见的程度塑造和撼动支撑人类社会的每一根支柱,经济发展、社会关系、政治结构、流行文化,无不如此。机器 无论是狭义上的硬件装置和设备,还是广义上的软件、算法和人工智能 已经渗透到了人类社会的每一个角落,正在影响着我们每一个人。 今天,人与机器的关系不仅愈加紧密,而且机器的能力在很多领域都正在逼近甚至已经超越人。这使一系列问题亟须被认真审视:人与机器之间的关系是近乎单向的创造与被创造、主宰与被主宰吗?人类是否能始终将机器置于自己的掌控之下?失控的机器会不会如马斯克、泰格马克等人预言的那样,将对人类形成存在性威胁,甚至将人类推向灭亡? 理查德 道金斯曾有一句名言: 鸡是一枚鸡蛋制造另一枚鸡蛋的工具。 人与机器之间的关系是否也会如此微妙?在《协同进化》中,借鉴达
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
机器人驱动装置是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。本书结合大量工程应用实例,系统介绍基于步进电动机、直流伺服电动机、交流伺服电动机、液压、气压等装置的驱动与控制技术及其新应用成果。本书取材新颖,涉及机器人广泛的应用领域、多种机器人类型和多方面的专业技术。叙述上以应用实例为主讲解,条理分明,深入浅出,通俗易读。本书主要供机电控制、机器人研究开发及应用专业人员学习和参考,也可作为高等院校相关专业师生的教学参考书。
本书以浅显生动的语言讲述*前沿的理念 人工智能与自适应学习将如何改变教育。当下人工智能正悄悄影响着社会生活与教育体系的各个层面,对全世界的学习与教育活动,都将产生极为深远的影响。因为人工智能,因为自适应学习,自孔子以来人类两千年历史上*次,我们可以有机会真正实现 因材施教 的伟大教育理念,跨越过去难以克服的重重阻碍,让教育真正实现 个性化 ,积极改善教学的成效, 复制 *卓越的教师,让优秀教师不再是 稀缺资源 。学校可以更有效地进行教育改革,政府部门也能用更低的成本实现教育公平。在这一刻,我们能够清晰地看到: 一次全新的教育革命正在展开!本书可作为高等院校教育学、教育技术、计算机专业高年级本科生、研究生的教材,也可作为广大教育科技工作者和教育管理者的参考用书。
机器学习系统既复杂又独特。复杂是因为它们由许多不同的组件组成,并涉及许多不同的领域。之所以说独特,是因为它们依赖于数据,不同用例之间的数据差异很大。在本书中,您将学习一种整体的方法来设计可靠、可伸缩、可维护的ML系统,并能适应不断变化的环境和业务需求。 作者Chip Huyen是Claypot AI的联合创始人,她考虑了每个设计决策 比如如何处理和创建训练数据,使用哪些功能,多久再训练一次模型,以及监控什么 在它如何帮助整个系统实现其目标的背景下。本书中的迭代框架使用了大量参考文献支持的实际案例研究。
本书系统地阐述机器学习中常见的几类模型,包括模型的思想、原理及实现细节等。同时,本书还结合了当前热门的机器学习框架Sklearn,对书中所涉及的模型进行用法上详细讲解。 全书共10章,第1章介绍机器学习开发环境的配置;第2章讲解线性回归模型的基本原理、回归模型中常见的几种评价指标,以及用于有监督模型训练的梯度下降算法;第3章介绍逻辑回归模型的基本原理和分类模型中常见的几种评价指标;第4章介绍模型的改善与泛化,包括特征标准化、如何避免过拟合及如何进行模型选择等;第5章讲解K近邻分类算法的基本原理及kd树的构造与搜索;第6章介绍朴素贝叶斯算法的基本原理;第7章介绍几种常见的文本特征提取方法,包括词袋模型和TF-IDF等;第8章讲解决策树的基本原理,包括几种经典的决策树生成算法和集成模型;第9章介绍支持向量机的基本
本书系统阐述分布式机器学习的理论、算法、和实践。
本书主要介绍了大模型的发展与演变、相关技术、应用场景、未来发展趋势和前景。本书首先回顾了大模型技术的起源和发展历程,然后介绍了数据预处理、Transformer、预训练与微调、模型推理和PyTorch框架等技术。此外,本书还通过具体的案例和实践展示了如何应用大模型技术来解决实际问题。本书旨在帮助读者全面了解大模型技术的发展与应用,并推动其在各个领域的应用和发展。 本书图文并茂,理论翔实,案例丰富,适合从事大模型开发的科研人员以及广大的开发者作为技术参考和培训资料,亦可作为高校本科生和研究生的教材。
《机器学习中的数学》是一本系统介绍机器学习中涉及的数学知识的入门图书,本书从机器学习中的数学入门开始,以展示数学的友好性为原则,讲述了机器学习中的一些常见的数学知识。机器学习作为人工智能的核心技术,对于数学基础薄弱的人来说,其台阶是陡峭的,本书力争在陡峭的台阶前搭建一个斜坡,为读者铺平机器学习的数学之路。 《机器学习中的数学》共19章,分为线性代数、高等数学和概率3个组成部分。第 1 部分包括向量、向量的点积与叉积、行列式、代数余子式、矩阵、矩阵和方程组、矩阵的秩、逆矩阵、高斯 诺尔当消元法、消元矩阵与置换矩阵、矩阵的LU分解、欧几里得距离、曼哈顿距离、切比雪夫距离、夹角余弦等;第2部分包括导数、微分、不定积分、定积分、弧长、偏导、多重积分、参数方程、极坐标系、柱坐标系、球坐标系、梯度、
通过一系列的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。 在更新的第3版中,作者Aur lien G ron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
本书对所有重要的机器学习方法和新近研究趋势进行了深入探索,新版重写了关于神经网络和深度学习的章节,并扩展了关于贝叶斯学习的内容。书中首先讨论基础知识,包括均方、 小二乘和 似然方法,以及岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍较新的技术,包括稀疏建模方法、再生核希尔伯特空间和支持向量机中的学习、关注EM算法的贝叶斯推理及其变分近似推理、蒙特卡罗方法、关注贝叶斯网络的概率图模型、隐马尔可夫模型和粒子滤波。此外,书中还讨论了降维、隐变量建模、统计参数估计、维纳和卡尔曼滤波、凸优化等技术。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。
本书从资产定价的核心问题出发,前沿而体系化地讨论了如何通过经济学推理将机器学习方法引入实证和理论资产定价研究之中,从而有效解决机器学习应用在资产定价中所面临的挑战,搭建了研究机器学习与资产定价的桥梁。为提升阅读体验,帮助读者充分理解书中内容,译者王熙教授与石川博士在行文中加入了精彩丰富的译者注,给原著提供必要的背景知识,从而帮助读者更好地掌握书中的行文逻辑。其中,为本书补充的诸多公式推导过程也能帮助读者加深对贝叶斯统计框架的理解。
本书主要介绍经典的机器学习算法的原理及改进,以及MATLAB的实例实现。本书内容分为三部分。*部分(第1章)是机器学习概念篇,介绍机器学习的相关概念,并且对机器学习的各类算法进行分类,以便读者对机器学习的知识框架有一个整体的了解,从而在后续的学习中更容易接受机器学习涉及的各类算法。第二部分(第2章、第3章)是MATLAB机器学习基础篇,介绍MATLAB的基本使用方法,以及MATLAB集成的机器学习工具箱。MATLAB易上手的特点让使用者将更多的精力专注于算法开发与使用,而不是搭建算法实现开发平台。第三部分(第4章~第19章)是机器学习算法与MATLAB实践篇,对监督学习、无/非监督学习、强化学习三大类常用算法进行逐个讲解,包括机器学习算法原理、算法优缺点、算法的实例解释以及MATLAB的实践应用。本书适合以下读者: 对人工智能、机器学习感兴趣的读者;
本书分类《机器学习导论》面向机器学习领域的主要模型和算法,重点阐述不同方法背后的基本假设以及它们之间的相关性,帮助读者建立机器学习的基础理论功底,为从事该领域的相关工作打下基础。具体内容包括机器学习研究的总体思路、发展历史与关键问题,线性模型,神经网络及深度学习,核方法,图模型,无监督学习,非参数模型,演化学习,强化学习,数值优化方法等。 本书可作为高等学校相关课程的教材,也可作为研究生及对机器学习感兴趣的科技、工程技术人员的参考用书。本书封面贴有清华大学出版社防伪标签,无标签者不得销售。