9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
上海交通大学钱学森研究中心编*的《智慧的钥匙--钱学森论系统科学》是一本以公务员和大学师生为主要读者对象的钱学森 论系统科学 的原*精选。初版于2005年4月,此次再版,增加了若干篇文章。 从事力学、导弹、航空、航天的研究和实践,这是人们 熟知 的钱学森。但是在1979年,钱学森说他研究力学已是 从前 的事了。钱学森又说: 我们完全可以建立起一个科学体系 去解决我们中国社会主义建设中的问题 。阅读本书,我们走进了钱学森晚年的学术世界,再次感受钱学森开创的 系统科学 在新时代背景下的应用价值和现实意义。
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书介绍黎曼几何中的重要技巧和定理,为满足那些希望专门研究黎曼几何的学生,书中还包含大量关于较深论题的背景材料。本书还介绍了最新的研究问题。各种练习散布全书,帮助读者深入理解书中内容。本书是为数不多的整合了黎曼几何的几何和分析两方面内容的专著之一,适合熟悉张量和斯托克斯定理等流形理论的读者,可作为研究生一学年课程的教材。
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
本丛书希望在中学数学和高等数学之间搭建一座桥梁,以中学数学为起点,逐步展示高等数学的基本思想和方法,便于大学新生快速适应高度抽象的高等数学。反过来,介绍如何把握高等数学的高观点,更好地服务于中学数学的教与学。 本书主要讲述复数在初等数学中的应用,包括解几何题、不等式和三角问题等。本书的最大创新在于不再将复数法视为一种 暴力 计算方法,而是将恒等式思想与复数结合,通过恒等式沟通几何、代数、三角、不等式之间的联系。复数恒等式方法不仅能解题,还能发现新命题,并关联多个看似不相关的命题,为初等数学研究提供新的探索思路。 本书案例翔实,思想新颖,方法简明,可启迪读者的思维,开阔读者的视野,提高读者提出问题、分析问题与解决问题的能力,适合学有余力的高中学生和教师、师范生以及数学教育研究者参
本卷是集合论的模型分析部分。在第一卷的基础上,本卷的主要任务是将逻辑植入集合论之中,并以此为基础实现三大目标:第一大目标是将同质子模型分析引入集合论,这是一种不同于组合分析的对无穷集合展开分析的基本方法;第二大目标则是建立集合论论域的具有典范作用的内模型??哥德尔可构造集论域,从而证明一般连续统假设和选择公理的相对相容性;第三大目标是建立集合论论域的具有典范意义的外模型??科恩的力迫扩张模型,从而证明连续统假设以及选择公理的相对独立性。这三大目标分为三章分别来实现。在一定意义上讲,每一章体现一种基本方法。这些基本方法是从事集合论研究的最基本的方法。
本书属于数学概览系列,选编了杰出数学家Robert Langlands的综述性文章,介绍了Langlands纲领的起源和发展及其创始人的数学生活。Langlands纲领将看似无关的学科如数论、分析、代数和几何联系在一起,揭示了所有数学的深层结构,并提供了解决棘手问题的新方法,现在经常被描述为 大统一数学理论 。本书由季理真选文,征求了作者和其他著名数学家的意见,并可 获得无偿的专有出版权,大多数文章还有作者本人及其他数学家的评论。 书中所涉及的内容称得上是20世纪数学上重要的成就之一,但大部分都是思想性的文章,并非对某个定理的详细证明,有利于读者更快地一览当代数学的前沿。透过书中的内容,读者可以体会Langlands如何看待数学并提出Langlands纲领。Langlands教授还亲自为本书撰写了很长的自序,分享了他的数学生涯,其对所关心的数学的想法和热情也对
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
在人类所有的发明中,数学和诗歌无疑是*古老的。可以说自从有了人类的历史,就有了这两样东西。如果说牧羊人计算绵羊的只数产生了数学,那么诗歌则起源于祈求丰收的祷告。无论数学还是诗歌,它们的故事和触角遍及人类社会的每一个角落,以及历史和生命的每一个瞬时。 《数学的故事》共分三辑,共讲述了20个如诗歌一般优美的数学故事。甲辑是中外或者东西合璧的7个数学故事;乙辑是8个有关数学家的故事,涉及10多位专业或业余的数学家;丙辑的故事围绕5个有趣的数学问题展开,深入浅出且具有一定的挑战性。 为引发同学们、老师们甚至家长们的喜爱,作者在以下几个方面做了努力: 可读性:语言质朴自然,生动有趣,留有余味。 可视性:图文并茂,有些插图是作者亲自在故事发生地拍摄的。 想象力:每则故事都不只是某一位数学家的故事,而是
在国家自然科学基金委员会天元基金领导小组委托西安交通大学理学院举办的“西部与周边地区高等学校非数学类数学教师培训班”上,12位教授应邀联合开设了“从大学数学走向现代数学”的系列讲座,本书即为该系列讲座的集成。书中各篇从大学数学中的某些基本概念与原理出发,以简短的篇幅阐明这些基本概念、原理如何发展到近代数学的相关分支与内容,使读者能更清楚地了解大学数学与现代数学的联系,从而能从更高的观点和更全面的视角理解大学数学内容。主要内容包括:从代数运算到代数结构、从有限维空间到无限维空间、从函数到算子、从序列收敛到网收敛、从导数到广义导数、从Newton-Leibniz公式到Stokes公式、从Taylor公式到学习理论、从矩阵的特征值到算子的谱、从微分方程到动力系统、从随机变量到随机过程、从数学应用题到数学建模、从Stirling
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛数论知识教材。书中涵盖了整除、优选公约数、算术基本定理、数论函数、同余方程、模p多项式、二次剩余、p进赋值等主题。通过精彩的例题重点展现了带余除法、裴蜀定理、高斯引理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估计、局部一整体原则的应用。课后共有二百多道习题供练习。本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的人员参考使用。
这本书不仅包括三角范畴的基本内容,还包括三角范畴在代数几何、代数拓扑 、交换代数、代数分析、K-理论及表示理论等领域中的应用。2004 年,上海交通大学章璞教授写了《三角范畴和导出范畴七讲》的讲义,2010 年又写了《三角范畴和导出范畴九讲》的讲义。我们相信许多国内学生都读过这些讲义,从中学到了有关三角范畴的初步知识,并受益匪浅。2015 年,科学出版社出版了章璞教授的《三角范畴与导出范畴》 书。该书是国内第 本系统介绍三角范畴与导出范畴的学术著作,它详细地介绍了三角范畴、同伦范畴、导出范畴、稳定范畴及它们在代数表示论中的应用,作者在前言中详细地介绍了三角范畴和导出范畴的起源。2004 年,Asadollahi 和 Salarian 在《代数杂志》上发表了 篇关千三角范畴 的 Gorenstein 对象的文章,这篇文章将模范畴中的 Gorenstein 投射模和
《量子力学的数学基础》是一本革命性的著作,它引起了理论物理学的巨大变化.在这本书中,20世纪最著名的数学家之一约翰?冯?诺依曼(John von Neumann)说明,通过探索量子力学的数学结构,可以获得对量子物理学的深入洞见.他首先介绍了埃尔米特算符和希尔伯特空间理论,它们提供了转换理论的框架,冯?诺依曼将其视为量子力学的确定形式.应用这一理论,他用严谨的数学来应对量子理论中的一些普遍问题,如量子统计力学以及测量过程.
《10000个科学难题 数学卷》是*、科学技术部、中国科学院和国家自然科学基金委员会联合组织开展的 10000个科学难题 征集活动的重要成果,书中的题目均由国内国际知名的数学专家撰写。书中收集了有关数学很多分支学科及数学的应用等方面的大量问题,以及当今一些重要的数学问题。
最优化是运筹学的一个重要分支,在很多领域具有广泛的应用。本书系统地介绍了线性规划、无约束优化及约束优化的基础理论和求解方法,主要内容包括:线性规划的对偶理论与最优性条件、无约束优化的最优性条件、约束优化的最优性条件与鞍点定理;求解线性规划的单纯形算法、内点算法、非内部连续化算法;求解无约束优化的最速下降法、牛顿法、共辄梯度法、拟牛顿法、非单调线搜索法、信赖域法;求解约束优化的序列无约束优化法、可行方向法、序列二次规划法等,也简单介绍了多目标规划的基本理论与求解方法。本书内容丰富,力求深入浅出、通俗易懂,每章后都附有大量的习题,便于教学。
数的几何是数论的一个经典分支,本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质、Minkowski第一和第二凸体定理、Minkowski-Hlawka容许格定理、Mahler列紧性定理、二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。