《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为 论小于一个给定值的素数的个数 。在这篇论文的中间部分,黎曼作了备注 一个猜测,一个 假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究 和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制 术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。在《素数之恋》中,极其明晰的数学阐释文
《2的平方根:关于一个数与一个数列的对话》以师生对话的形式展开讨论。博学的老师引导学生一步步逐渐熟悉数学推理,让学生体会数的概念远比初能想见的微妙得多。年轻的学生被2的平方根这个神奇的无理数所吸引,踏上了一段奇特的数学之旅,随后他又遇见了令他着迷的数列。强烈的好奇心驱使他迫不及待地投入工作,去了解这个神奇的数,了解这个数与数列之间的联系。本书所使用的代数方法相对简单,但非常巧妙,让读者体会到寓教于乐的态度和精神。
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。
《自然哲学的数学原理》是牛顿所写的旷世巨著,是他 个人智慧的伟大结晶 。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。 《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域尖端知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与 奇点解消问题 的故事为线索,讲述了广中平?v在挑战 奇点消解问题 的过程中,对 数学学习 数学教育 以及 创造性思维 的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
本卷是这本《集合论导引》的开卷,分为三章,是后续两卷的基础。第1章主要是引进集合论的基本公理、基本概念、基本方法,并给出典型的可数集合的例子,包括自然数集合、整数集合、有理数集合以及彻底有限集合等。第2章主要是引进选择公理以及由此建立起来的基数运算律和一些典型组合实例。第3章专门引进实数集合并对它进行系统分析。本卷将建立一系列基本概念,为全书作铺垫。
本书的作者都是杰出的数学家,也都有一个业余爱好,魔术和杂耍。从他们的这本书中,你可以了解到一些花式洗牌法的数学性质;一些用到中国古代占卜书《易经》的戏法,还有奇偶性是怎样在魔术中起作用的。 它不仅是一本出色的、写法不拘一格的数学魔术导引,而且在书的末尾作者还提供了为数学魔术做出巨大贡献的魔术师的照片和传略。 不会再有一本如此条理清晰地、如此饶有风趣地对广阔的数学魔术领域做出一番综述的佳作了。
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是 高等数学启蒙小丛书 系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。 既有大小又有方向的量(在物理学中称作矢量,在数学中称作向量。) 则相对容易理解,作者以此为起点,分为六个部分,二十个章节,一步步向读者介绍,直至张量。 如:部分从矢量的袋鼠运算讲起,详述矢量的矢量混合积;第二部分,引入矢量三重系;第三部分,先讲解变矢量的微分运算;第四部分,讨论矢量场的线积分与面积分;第五部分,从曲线坐标入手,讨论曲线坐标下的向
本书介绍了45个著名数学问题的极富创造性和独具匠心的证明。其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。这不是一本教科书, 也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。希望每一个数学爱好者都会喜欢这本书,并且从中学到许多东西。 第六版在上一版的基础上进行了扩充和修订,其中包含了一个关于Van der Waerden积和式猜想的全新章节,以及其他章节中高度原创而优美的新证明。 2018年 Steele数学阐释奖 颁奖词节录: 想要写出一部可以被各个层次和背景的人阅读和欣赏的数学书几乎是不可能的,但Aigner和Ziegler以精湛的文笔完成了这一壮举。 这本书对数学有着不可估量的作用,为非数学家阐明了当数学家在谈论美时他们在谈论什么。
本丛书希望在中学数学和高等数学之间搭建一座桥梁,以中学数学为起点,逐步展示高等数学的基本思想和方法,便于大学新生快速适应高度抽象的高等数学。反过来,介绍如何把握高等数学的高观点,更好地服务于中学数学的教与学。 本书主要讲述复数在初等数学中的应用,包括解几何题、不等式和三角问题等。本书的最大创新在于不再将复数法视为一种 暴力 计算方法,而是将恒等式思想与复数结合,通过恒等式沟通几何、代数、三角、不等式之间的联系。复数恒等式方法不仅能解题,还能发现新命题,并关联多个看似不相关的命题,为初等数学研究提供新的探索思路。 本书案例翔实,思想新颖,方法简明,可启迪读者的思维,开阔读者的视野,提高读者提出问题、分析问题与解决问题的能力,适合学有余力的高中学生和教师、师范生以及数学教育研究者参
本书是解读望月新一 跨视宇Teichm ller理论(IUT理论) 的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本 IUT理论 的解读手册。书中侧重解读 IUT理论 的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与经典数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解 IUT理论 的入门读本,也适合作为学生了解数学思考方法的参考读物。
《微积分的奇幻旅程》9787115525062 定价:35.00 苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦! 《数学定理的奇妙世界》9787115530004 定价:35.00 勾股定理应该是大家非常熟悉的数学定理,但你知道它在*初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学
数学就是一个与不可能发生近距离冲突的故事,因为数学中的一切伟大发现都接近于不可能。有许多表面看来不可能的例子,它们对于数学而言很重要。 渴望不可能 是数学中取得的许多进步的源头。本书中的大多数例子:无理数、虚数、无穷远点、弯曲空间、理想,以及各种类型的无穷 这些概念初看起来是不可能的,因为我们的直觉无法领会它们,但它们在数学符号体系的帮助下是可以被精确理解的,而数学符号体系是对于我们的感官的一种技术延伸。 本书涉及看似不可能的艺术、文学、哲学和物理学,摆脱了对数学概念的狭隘解释,拓宽了学生的视野。
本书极具特色,它既不是一般的数学教材也不是一般的数学史教材,而是一本通过数学史来讲授数学的教材,本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题的背景及发展中的故事等材料,赋予读者数学是统一的观点。 本书原版自1989年出版版以来,至今一直受到数学评论界的高度评价和读者的欢迎。本书将对提高数学专业师生及广大爱好数学人士的数学修养很有价值。第三版在原来第二版的基础上做了不少修订, 新增了部分章节并添加了很多练习,将带给读者更多的惊喜! 本书包含了诸多在一般的本科生数学史教材中不常见的有趣的主题。事实上,这些主题如果从历史的角度来阐述,将能使学生更好地理解和欣赏其中的数学思想 David Parrot,澳大利亚数学会 本书非常生动且言简意赅 不仅能激发学生和教师的兴趣,对广大数学爱好
?书 ? ? ? 名 ? ?应用数理统计(第三版) ?作 ? ? ? 者 ?刘剑平 等 主编 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2019年06月 ?I ?S ?B N ?978-7-5628-5890-4 ?页 ? ? ? 数 ?263页 ?字 ? ? ?数 ?413千字 ?开 ? ? ? 本 ?16 开 ?重 ? ? ?量 ?0.47千克 ?定 ? &
20世纪最伟大的数学家之一 Andr Weil 在本书中用真诚朴实的语言讲述了他从童年到1947年秋季的经历。他在书中回忆了主要游历:意大利、德国、瑞典以及英国;然后在印度工作两年多,其间他短暂地遇到了甘地;返回巴黎后参与创立了布尔巴基学派;战争年代继续到访了苏联、芬兰,他被芬兰警察当作苏联间谍,险些被执行死刑,辗转于多个监狱,在鲁昂监狱完成了他最伟大的工作:证明有限域上的光滑射影曲线的黎曼猜想;最后以美洲经历为本书画上句号。 通过阅读本书,读者可以洞察一位深刻思想者的内心,这位思想者具有超强的创造性。本书值得对数学、哲学感兴趣的读者收藏。