《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
暂无内容简介。。。。。。
本书是普通高等教育“十五”“十一五”和“十二五”国家级规划教材。全书以线性空间为纲,在线性空间的框架下展开高等代数的主要内容。内容包括:行列式、矩阵、线性空间、线性映射、多项式、特征值、相似标准型、二次型、内积空间和双线性型等。本书力求深入浅出,在介绍抽象的数学概念时交代其来龙去脉,在讲解精妙的数学方法时交代其背景思路。书中还有大量精选的例题和习题。本书是高等学校数学系的教材,也适合统计系、理工科各系,以及经济、管理类专业的学生、研究生和教师参考。
“数学”与“诗歌”,看似在两条道上跑步的“行者”,没有交集,其实,两者从山麓分手,却在山顶汇合. 当变幻莫测的“高冷”数学与撩人心弦的“柔美”诗歌相遇时,“寓数于诗,融诗于数”,既充满着想象、智慧、灵感、章法、和谐与挑战,又装载着创造、激情与力量······唐诗、宋词、元曲······像是一片璀璨的文学天空,为我们留下数不尽的艺术星辰;而数学则如同穿游在其间的陨石,虽来去匆匆,却不失为一幕瑰丽的风景. 诗歌中隐含着许多数学知识,可从数学知识上了解诗歌的魅力;而数学中常用的许多思想方法,也可供诗人借鉴.
本书通过简明的理论介绍与方法总结,以及对大量有代表性的典型例题进行分析、求解和评注,揭示了高等代数的解题方法与技巧。另外,书中给出了北大《高等代数》(第四版)教材中各章习题及补充题的解答;书末附录中提供了四套(四个学期)考试真题及解答。编写本书的目的在于帮助读者把握教学、学习和考试要求,巩同和加深对基本概念的理解,增强运算能力,提高分析问题、解决问题和应试能力。 本书可作为大学生学习高等代数课程的指导书,可供报考硕士研究生的读者以及有关教师及科技工作者参考。
本书首先介绍了学习这门课程所需的一些预备知识,如集合、映射、数域及数学归纳法等。正文部分主要内容有空间解析几何、数域上的多项式、行列式、矩阵、向量与线性方程组、线性空间、线性变换与相似矩阵、内积空间、双线性函数与二次型及多项式矩阵,共十章。每节后配有习题,便于学生对本节知识的巩固和提高。为使初学者易于掌握内容,作者力求做到层次清晰、结构严谨、深入浅出、循序渐进等特点。本书可作为普通高等学校数学类、应用数学类及数学相关专业的教材或教学参考书。
《多维标度方法》主要介绍了多维标度方法的主要内容,主要包括三部分内容。第一部分(第1章至第6章)介绍传统多维标度方法的内容,包括经典多维标度方法、度量多维标度方法、非度量多维标度方法及多维标度方法应用的具体流程。第二部分(第7章)介绍多维标度方法的新进展,主要是基于欧氏距离阵的优化模型。第三部分(第8章到第10章)介绍多维标度方法在一些实际问题中的应用,如图像排序、蛋白质分子重构及大型臂架的姿态感知。