本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
全书分为三大部分,其中*部分为对应教材的课后习题全解以及总复习题全解,有些题目给出多种详细解法,便于读者自学参考.为了便于教师布置课后作业,原课程教材的课后习题是按节配置的,且每一章的后面均附有总复习题,配套辅导用书的章节目录体系与课程教材完全一致.第二部分为期末考试试题,第三部分是期末考试试题全解. 本书既可以作为普通高等学校经管类本科生学习《微积分》(上册)课程的配套辅导用书,也可以作为教师的教学参考用书和全国硕士研究生统一入学考试的复习用书.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
《预科数学基础教程》具备以下特点: (一)汉字认读与数学语言的结合 对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。 (二)直观图形与数学知识的结合 大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
本书是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对本课程的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complexnumbersandfunctionsofacomplexvariable(复数与复变函数),analyticfunctions(解析函数),complexintegrals(复积分),series(级数),residues(留数),conformalmappings(保形映射)。第7章和第8章是积分变换部分,包括Fouriertransform(傅里叶变换)和Laplacetransform(拉普拉斯变换)。书中各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,本书编写中重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,上册包括数列与函数极限、一元函数的导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量代数与空间解析几何等内容。
《高等数学习题集》自2000年出版*版以来,受到读者的一致好评,现出版第五版,在保持原有特色和风格的基础上,增减和修改了部分习题,加强了相关内容的基本概念、基本理论和基本技能的训练,每个章节的习题搭配上更注意 坡度 ,且题型及内容更趋于合理。本书结构参照同济大学应用数学系编写的《高等数学》(第七版)内容顺序编排;在能力提高部分,又精选和增加了近来年部分考研题,供学有余力的学生选做;在附录中,仍保留《三角函数基本公式》,供学生学习时查阅。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
本书根据中国数学会制订的 中国大学生数学竞赛大纲 、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的 高等数学竞赛大纲 、教育 部制订的 考研数学考试大纲 编写,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程九专题,每个专题又含 基本概念和内容提要 竞赛题解析 和 练习题 三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。本书可作为大学生参加高等数学竞赛的的培优教程,也可作为大学生学习高等数学的参考书。
本套书作为大学 高等代数 课程的创新教材,是*优秀教学团队(北京大学基础数学教学团队)课程建设的组成部分,是*教学名师多年来进行高等代数课程建设和教学改革的成果。本套书以讲述线性空间及其线性映射为主线,遵循高等代数知识的内在规律和学生的认知规律安排内容体系,按照数学思维方式编写,着重培养数学思维能力。上册内容包括线性方程组,行列式,n 维向量空间Kn,矩阵的运算,矩阵的相抵与相似,以及矩阵的合同与二次型等。下册内容包括一元和n 元多项式环,线性空间,线性映射,具有度量的线性空间,以及多重线性代数。书中每节均包括内容精华、典型例题、习题,章末有补充题,还特别设置了 应用小天地暠板块。本书内容丰富、全面、深刻,阐述清晰、详尽、严谨,可以帮助读者在高等代数理论上和科学思维能力上达到相当的高度。本书适合用作综合大学、高等师
本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章,该书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望该书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
吴纪桃、魏光美等编著的《高等数学(第2版)》分上、下两册,上册内容包含函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用和级数,下册内容包含空间解析几何与向量代数、多元函数微分学、重积分、曲线积分与曲面积分和常微分方程。 《高等数学(第2版)》内容经过精细筛选,重点突出,层次分明,叙述清楚,深入浅出,简明易懂。全书例题丰富,每节之后均配有适当数量的习题,书末附有习题答案与提示,便于教师教学,也便于学生自学。 本书可供高等学校理工科非数学专业的本科生作为教材使用。
本书是《高等数学(经、管类)》教材的配套习题册, 各章节的编排与教材对应.本书共10章,包括函数与极限、导数与微分、微分中值定理及其应用、不定积分、定积分及其应用、空间解析几何初步、多元函数微分学、二重积分、无穷级数、微分方程与差分方程等内容.
本套书是大学“高等代数”课程的辅导教材,是作者多年来在北京大学从事高等代数数学工作的结晶。本套书共有11章,分上、下两册。每章节主体结构包括内容精华、典型例题、习题三部分,章末还有补充题。本书阐述了高等代数的理论,总结了高等代数中重要的典型题型及考研题型,提炼了解题的规律、方法和技巧,旨在通过对理论的阐述以及解题方法和技巧的分析,使读者能掌握理论,举一反三、触类旁通。本书可作为“高等代数”或“线性代数”课程的教学参考书,也可供从事高等代数或线性代数教学的教师参考,还可作为工学、理学、经济学、管理学等学科专业硕士生入学考试数学科目的复习用书。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。