本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版30多年来多次改版,被mit、哥伦比亚大学、uiuc、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、polya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 本书适合作为高等院校相关专业组合数学课程的教材。
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书系统介绍了线性代数与解析几何的基本理论和方法,主要内容包括行列式、矩阵、空问解析几何与向量运算、n维向量、线性方程组、矩阵相似对角化、二次型、MATLAB简述与应用。本书注重代数与几何的有机结合,强调矩阵初等变换的作用,将数学建模思想融人教材,注重应用背景及实例的介绍,并精选了大量的例题和习题,便于学生自学。
本书在第一版的基础上增加了与代数几何和组合数学相交叉的内容。 本书在本科抽象代数课程的基础上讲述了交换代数的基本的也是重要的Hilbert基定理、 Hilbert零点定理、理想的准素分解、相伴素理想、维数、重复度、正则环和正规环等内容.同时,对应地讨论了代数集的基本性质、代数集的分解和维数、代数簇的非奇异性和正规性等,还讨论了组合交换代数的基本内容。
《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数的递归关系)、容斥原理、伯恩赛德计数定理和波利亚计数定理。《组合数学及应用》共分八章,每一章都配有一个计算机、电子信息、人工智能等领域的应用案例,以展示数学原理或方法在这些专业问题上的应用。此外,每章末附有习题,供读者练习和进一步思考,以巩固和深化理解。《组合数学及应用》围绕组合计数问题,将数学原理与实际应用相结合,介绍集合与多集上的排列与组合、二(多)项式定理、二项分布与信息熵、鸽巢原理、拉姆齐理论、生成函数、递归关系(包括斐波那契数、斯特林数、卡特兰数、调和数
本教材分上、下两册,上册由前六章构成,依次为集合论的基本概念、抽象代数的基本概念、Green关系与正则半群、群(特别地,有限群)、环与理想,模与线性空间;下册由后两章构成,依次为域与域的扩张,Galois理论导引。本书为上册。本教材的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章或前六章(特别是未加*的部分)可用作数学类各专业必修基础课程抽象代数的教材或参考资料;下册的后两章可用于后续选修课程域论与Galois理论的教材或参考资料。
作为普通高等教育“十一五”***规划教材,本书是在多年教学实践的基础上,为适应教学改革新的要求而编写的。主要内容有行列式和线性方程组的求解、矩阵、几何空间、n维向量、特征值与特征向量、二次型与二次曲面。每章的最后一节均为“用MATLAB解题”,并附有“历史小贴士”。各章的习题分(A),(B),(C)三类。习题(A)供学生自测之用,习题(B)可以作为课后作业,习题(C)包含应用题和实验题两种类型的习题。这样设置习题是希望借此能拓展学生知识背景,培养应用意识,同时也能兼顾不同学习层次的学生的需要,便于选用。与本书配套的手机应用还为读者提供了丰富的多媒体资源,内容包括有关知识的历史简介和一些难点的讲解视频以及二十个经典的实际应用案例。
本书可以分成两大部分,前半部分讲述了网络科学这门学科产生的背景和主要的理论模型其中特别值得注意的是,第3章介绍的是小世界网络模型,第4章介绍无标度网络模型,第五章则介绍了关于搜索的模型,这三章的介绍包括了这些模型的内容和意义。这三章具有较强的理论性。后半部分则广泛地介绍了在若干应用领域的应用状况。第6章讨论了疾病和计算机病毒的传播中的问题第7、8章研究了另外一些社会现象,例如,文化时尚、政治动乱,金融泡沫等告诉了我们什么。第9章则讨论了组织的坚固性和它对现代公司企业的启示。*后第10章对全书进行总结,提出一个简要的概括。
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书是理工科、技术学科、经济与管理等类学生学习《线性代数》课程的学习辅导书。全书共六章:矩阵与行列式,线性方程组,线性空间与线性变换、特征值与特征向量、Euclid空间与酉空间、二次型。本书重视基础知识的学习与基本技能的训练,强调教学内容与习题解析的同步衔接;注重整合知识,科学地指导学生进行解题的训练;书中还选择了许多综合性与灵活性问题,同时也对一些结论进行引申,引导学生独立思考和深入训练;在例题讲解中,适时穿插一些评注,起到画龙点睛的作用。本书还对全国和一些院校的硕士研究生入学考试试题适当地进行选择,有机地穿插在例题和习题之中。本书还在每小节之后都配置了一定量的习题,并附有答案或提示。 本书的深度和广度能适应大多数专业的线性代数知识的学习需要,可作为高等学校理科、工科、技术
李忠华,男,中国科学技术大学数学系本科毕业,东京大学大学院数理科学研究科理学博士,现为同济大学教授,数学科学学院教学中心主任。 本书为线性代数讲义上册,系统、完整的介绍了线性代数中各个概念及其性质与应用,包含多项式、线性方程组与矩阵、矩阵的运算、行列式、向量组与矩阵的秩、向量空间六章,本书不仅针对重要内容给出例题讲解,还在每节附有习题,每章附有补充题,可以帮助学生 好地掌握知识点。本书可作为高等院校线性代数课程教学辅导书,还可供其他相关专业学生参考。
李晓艳、魏晓娜、李永军编写的《线性代数与解析几何(普通高等教育十三五规划教材)》内容包括行列式、矩阵与线性方程组、几何向量与坐标、轨迹与方程、平面与直线、线性空间、特征值与特征向量、二次型与常见的二次曲面,同时附有多个应用教学案例,本书的特点是强调几何与代数的融合,强调从具体到抽象的思维方式,以及从问题出发引入概念与内容的教学模式。 本书可作为理工科和其他非数学类专业高等院校的教学用书,也可作为各大专院校或成人教育学院的学生教材,还可作为考研生、自学者和广大科技工作者的参考资料。
本书分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔岗的证明”、“美国数学家安凯屈的证明”、“圆周率及其元理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
本书为线性代数入门的科普读物,书中以“如何理解线性代数”“如何理解矩阵的基础概念与计算方法”为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。《线性代数》是理工类和经管类高等院校学生必修的一门重要基础理论课程。它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性。通过该课程的学习,能使学生掌握该课程的基本理论和基本方法,且对学生其他能力的培养(如逻辑推理能力、抽象思维能力)和数学素养的提高也有着重要的作用。这些理论方法和能力为一些后续课程的学习及在各
本书系统地阐述组合数学基础、理论和方法,侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、Pólya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 本书适合作为高等院校相关专业组合数学课程的教材。
《稀疏插值及其在多项式代数中的应用》主要介绍了稀疏插值算法及其在多项式代数中的应用,包括经典的稀疏插值算法和改进算法,以及其在多元多项式方程组求解、组合几何优化问题上的应。 《稀疏插值及其在多项式代数中的应用》是为数学、计算数学和计算机科学专业的高年级本科生和低年级研究生编写的著作,也可供相关专业的学生、教师及科技工作者参考。