《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
本书分为上、下两册。 上册讲述多项式、线性方程组、矩阵和行列式等代数理论,进而抽象出线性空间理论;下册讲述线性变换、Jordan标准形、内积空间和双线性函数和二次型等几何理论。本书在多项式部分强调类比的方法,在线性代数的代数部分强调初等交换的核心地位以及化一般为特殊的解决问题的基本方法,在线性代数的几何部分强调几何和代数的对应与联系。全书线索清晰,证明过程翔实,力求重现数学再发现过程,低起点而高落点,并对部分知识点进行拓展,每一章节后配有丰富的习题,以便学生巩固概念和开拓思路。 本书可作为普通高等学校数学类线性代数课程或者高等代数课程的教材,也可作为其他相关专业参考用书。
本书为第二版,内容包括三部分:*部分为矩阵代数,以矩阵为基线,介绍本书所需要的近代数学知识,包括非经典的矩阵乘法、随机矩阵、超矩阵、群论、张量、图与超图等。第二部分为控制理论,首先介绍经典控制理论的线性系统能控性、能观测性、标准分解、解耦、镇定与*控制等,然后介绍逻辑系统的控制理论,包括逻辑系统的状态空间方法、拓扑结构、能控性、能观测性、干扰解耦,以及K值与混合值逻辑系统。第三部分是博弈论,首先介绍博弈的基本概念,然后讨论演化博弈与网络演化博弈,包括其建模、分析与控制,特别介绍势博弈的算法与应用,*后讨论合作博弈,详细讨论了分配的生成及其合理性。 本书可作为各种不同专业的高年级工科学生,以及一、二年级研究生教材,也可作为对控制与博弈有兴趣的一般理工科学生和青年教师的参考读物。
本书包括39章和一些补充问题(补充问题作为第40章),每一章又以解题方法为基础分为若干专题,其中包括代数、数论及分析相关内容的专题,每道习题都给出了详细答案或分析。
本书由潘承洞先生生前所写的《数论基础》讲义编辑整理而成。全书秉承了潘先生著作的贯风格,内容由浅入深、循序渐进,既精选紧凑,又全面深刻,同时附有大量的习题。本书内容独具一格,富有启发性,能够引导读者迅速进入数论的核心领域,了解数论基本的思想和方法。书中定理和结论的证明简洁明快,既注重数论的技巧之美,又清晰地勾勒出数论方法的性。全书共分七章,内容包括整数的可除性,数论函数素数分布的一些初等结果,同余,二次剩余与Gauss互反律,指数、原根和指标,Dirichlet特征等。本书可供数学及相关的本科生研究生和教师使用参考,也可供对数论感兴趣的数学爱好者阅读。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
本书包括39章和一些补充问题(补充问题作为第40章),每一章又以解题方法为基础分为若干专题,其中包括代数、数论及分析相关内容的专题,每道习题都给出了详细答案或分析。
南秀全编著的《奇数偶数奇偶分析法》共分三章,分别介绍了奇数和偶数的基本性质,奇偶分析法在解题中的应用,以及奇数和偶数的特殊表示法。每节后都配有相应的习题,供读者巩固和加强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用。
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
本书共分三章,分别介绍了奇数和偶数的基本性质,奇偶分析法在解题中的应用,以及奇数和偶数的特殊表示法,每节后都配有相应的习题,供读者巩固和加强
本书介绍了作者在几何不等式领域的一项发现——三正弦不等式,着重讨论了它的应用由此推导出了大量涉及三角形的不等式,其中包含许多有名结果,如Wolstenholme不等式、Kooi不等式、K1amkin惯
本书包括域和Galois理论的基本内容。全书共3章。在引言中介绍了域和Galois理论的来源及多项式和有限可解群的基本理论;在域的扩张中详细讨论了单纯扩张、有限扩张和代数扩张、分裂域和正规扩张、可离扩张与单纯性(包括迹与范数)、有限域、扩张等;在Galois理论部分,首先证明了Galois基本定理,然后进一步介绍了根式扩张与解方程、尺规作图问题等。书中还包含了适量习题和有趣的例题,如详细证明了圆周率7c和自然数e的性等。本书可以作为高等学校数学专业和相关专业本科高年级学生和研究生的,也可以作为中学教师和工程技术人员的参考书。
代数应用题,也称为代数故事题,是将数学理论与生活情境连接的桥梁,是数学教学的重点和难点。在代数应用题解题过程中,广大中小学生普遍存在表征困难等问题。本书在分析智能导学系统、题意理解等 外研究现状的基础上,面向代数应用题,提出表征辅导系统。本书首先分析了应用题的结构特征,提出基于情境模型的知识表示方法;然后基于自然语言处理技术,根据框架语义和句模理论,构建面向代数应用题的框架语义知识库,提出基于层次结构的句模,在此基础上,对题型进行识别,并抽取应用题题目文本中的情境实体、情境变化等,促使机器理解题意; 在机器理解题意的基础上,从问题情境自动仿真、基于问卷的表征辅导、列算式表征等角度有效辅导学生对应用题进行表征。本书进一步完善了智能导学系统研究,为辅导广大中小学学生有效表征应用题、