本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
The controllability and observability are of great importance in boththeory and applications. A complete theory has been established for linearhyperbolic systems, in particular, for linear wave equations. There havealso been some results for semilinear wave equations. For quasilinearhyperbolic systems that have numerous applications in mechanics, physicsand other applied sciences, however, very few results are available evenwith space dimension one. This monograph is based mainly on the results obtained by the author andhis collaborators in recent years. By mea~s of the theory on the semi-globalclassical solution, a simple and direct constructive method is presentedin a systematic way to get both the controllability and observability in theframework of classical solutions for general first order 1-D quasilinearhyperbolic systems with general nonlinear boundary conditions.Corresponding applications are given for 1-D quasilinear wave equationsand for unsteady flows in a tree-like network of open can
《非线性物理科学:离散和切换动力系统(英文版)》用一种清晰简明、独特的观点讨论非线性离散动力系统稳定性和分叉理论,并分析了离散动力系统中稳定性及其切换的复杂性。本书首先介绍了含多重特征根的线性离散系统的解析解和稳定性理论,给出了详细的离散非线性动力系统的稳定性和奇异性分类;然后通过众多例子展示离散动力系统中的混沌及其分形性,并应用正映射和负映射讨论了非线性离散动力系统完整动力学,包括其不动点和混沌的阴阳解。本书还系统地讨论了具有搬运跳跃律的切换系统稳定性,将其作为描述连续和离散混合系统一般的形式;并介绍了一种广义的符号动力学——映射动力学,通过此动力学讨论在边界不连续动力系统的擦边分叉以及奇异吸引子碎裂机理,以帮助读者更好地理解离散、切换不连续和边界不连续动力系统中的规
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其*发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
中国科学院数学与系统科学研究院于2011年4月至2011年10月举办了题为“非线性偏微分方程中的分析”的主题研讨班。本书收集了其中8篇讲义,包括 Nicolas Burq教授等关于水波问题Cauchy理论的低正则性,Jean-Yves Chemin教授关于Navier-Stokes方程,以及Isabelle Gallagher教授关于海洋流的半经典分析的精彩内容等。这些内容在一定程度上反映了近年来在流体力学的相关数学理论方面的一些进展。本书可作为从事非线性偏微分方程、特别是流体力学方程和微局部分析研究的科研人员和教师的学习和参考用书。
本书是与华东师范大学数学系编《数学分析)(第四版)配套的学习指导书,主要是作为学习该课程的课后复习和提高之用。本书按主教材的章节次序编写,每节包括:内容提要、释疑解惑、范例解析、习题选解,每章后附有该章总练习题的解答及测试题。本书切合实际,针对学生学习中常见的错误、常出现的问题进行剖析、解答和指导,注意提高学生对数学分析的基本概念、基本理论、基本方法和技能的理解和应用,可作为数学类专业学生学习数学分析的参考书,对教师也有一定的参考价值。
本书是* 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。 本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与西安交通大学马知恩和王绵森教授主编的普通高等教育“十五”*规划教材《工科数学分析基础》(第二版)(上册)相配套的教学辅导书。 本书每章内容分为三个部分:主要内容剖析;教学要求、典型例题与讨论题;习题选解。本书可作为工科学生学习高等数学课程的学习辅导书,并兼顾任课教师的教学需要,同时也可供其他非数学类专业的学生和教师参考。
本书汇集了 数学分析 方面的问题和反例500 多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。每一章分为三部分: *部分提纲挈领地给出了该章的基本概念和主要结果; 第二部分是问题,包括解法; 第三部分是反例。 本书所选的问题和反例比较典型,难度适中,构思新颖,解法精巧,富有启发性。书中不少问题和反例直接选自国内外有关学者所做的工作。本书对正确理解 数学分析 的基本概念,掌握 数学分析 的基本理论和技巧很有好处。 本书可供大学、大专数学系师生、数学工作者参考。