《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
本书是关于一般拓扑的一部经典著作.书中系统地介绍了一般拓扑的基本知识.正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间.此外,还有一章预备知识和一个附录.每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容.书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌. 本书正文七章由吴从忻翻译,其余由吴让泉翻译.增添的附录由吴从忻撰写. 本书可供高等院校数学系师生及有关的专业工作者参考.
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问
《拓扑线性空间与算子谱理论》是为具有初步泛函分析知识的读者提供的深入一步学习的泛函分析教材或参考书。内容由拓扑线性空间一般理论与算子谱理论两部分组成。全书共包含六章和两个附录,前面三章叙述拓扑线性空间的一般理论,后面三章是关于banach代数与算子谱理论的,之后介绍了谱理论在算子半群理论与遍历理论中的一些应用。 《拓扑线性空间与算子谱理论》在讲解上述理论知识的同时还选取相当数量的实际例子加以阐释,以期加强基本理论和实际应用之间的相互联系。
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
《环境政治学译丛·全球视野下的环境管治:生态与政治现代化的新方法》全面系统地阐述了“生态现代化理论”的核心理念以及一些在相关领域实证研究的经验性发现。作为一本论文集,本书的作者基于生态现代化的理论框架,主要运用比较研究的方法和分析视角,从全球视野出发,致力于对不同经济社会走向生态现代化过程中的各种影响因素与进程加以分析和探讨:经济生态现代化潜在的促进因素与潜在的障碍以及先驱国家的特殊作用;领导型市场的培育及其对经济社会生态化转型的重要意义;环境技术及其支撑性政策的革新与扩散的影响因素及路径;当代民族国家政府环境管治政策与手段的革新;能源政策的绿色整合;环境政策制定的国际影响因素以及一些国际环境问题的管治与解决。
伍鸿熙、沈纯理、虞言林编著的《黎曼几何初步》是黎曼几何的一本入门教材。本书从黎曼度量及联络出发,介绍了黎曼流形研究中的各种基本概念和技巧。以测地线的研究为重点讨论了各种形式的比较定理和Morse指数定理,同时还介绍了子流形几何学。 书中也勾画了近代微分几何中的一些重大成果,如球面定理、正质量猜想以及几乎平坦流形等,最后还列举了当今微分几何研究中一些尚待解决的问题。 本书可作为大学、师范院校数学系高年级选修课教材以及研究生教材,也可供数学工作者参考。
《混沌与分形浅谈》就是一本通俗科学书,但又不是一般的通俗科学书。它所讲的问题不是只作泛泛的介绍,而是有一定的数学推导,推导过程详尽而浅显,使读者一读就能读懂,从而获得相应的知识。它既适合高中学生,也适合大学学生;既适合从事该方面研究的人作为人门读物,也适合不从事该方面工作的各类科学工作者作为拓宽知识的读物。
本书的目的是从直观、直觉的方面,呈现几何学之貌,“几何”在此书中得到非常广泛的解释,除了平面曲线的解析几何,曲线和曲面的微分几何之类的一般几何外,它还包括了共形映射、极小曲面、数的几何及其在数论中令人惊奇的应用、位形空间之几何、多丽体与曲面的拓扑等。《数学概览:直观几何(下册)》每一章都是从非常简单和基本的概念开始;然后向读者们演示,如何把困难的结果和理论归结为简单的东西,以及数学的不同部分是如何相互关联的。《数学概览:直观几何(下册)》还收录了由亚历山德罗夫写的关于拓扑学的附录,作为对《直观几何》关于拓扑学系统知识方面很好的补充。
辛几何是近十几年发展起来的新的重要数学分支。《现代数学基础丛书·典藏版14:辛几何引论》是辛几何(辛流形)的入门性读物。《现代数学基础丛书·典藏版14:辛几何引论》共分六章,分别是:代数基础,辛流形,余切丛,辛G-空间,Poisson流形,一个分级情形。前三章是重要的基本概念,后三章论述有关的应用。 《现代数学基础丛书·典藏版14:辛几何引论》可供大学高年级学生、研究生以及几何、群论、分析、特别是微分方程方面的研究工作者参考。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
项武义、王申怀、潘养廉编写的《古典几何学》采用近代观点系统介绍了古典几何学的基础知识(其中包括欧氏几何、非欧几何、解析几何、球面几何与三角、射影几何等),并着重对各种古典几何体系进行比较分析和全局探讨,突出它们的几何思想和在方法论上的创见。 《古典几何学》可作为大学和师范院校的几何学教材或教学参考书,也可供中学数学教师进修和教学时参考。
本书是在1996年出版的《常微分方程》(德文)一书的基础上编写而成的,书中主要介绍常微分方程的基础理论。内容包括:可积一阶微分方程,微分方程解的存在性和性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。阅读本书需要具备的计算代数、线性代数及泛函分析的基础知识。适用于高校数学、牧业和计算机科学等相关的本科生和研究生。