《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程教材、数学建模竞赛培训课程的教材,也可供高校师生和相关科技工作者参考。
"Stochasticoptimizationincontinuoustime"(AuthorFwu-RanqChang)isarigorouutuser-friendlybookontheapplicationofstochasticcontroltheorytoeconomics.Adistinctivefeatureofthebookisthatmath-ematicalconceptsareintroducedinalanguageandterminologyfamiliartograduatestudentsofeconomics.
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
《离散与连续空间中的搜索理论》讨论离散和连续空间中关于静止和运动目标的搜索策略,分析了目标的概率分布函数已知和未知的各种情况,重点介绍了搜索理论的基础知识和发展。 《离散与连续空间中的搜索理论》共分6章。章介绍搜索理论的产生、发展过程及研究现状。第2章讨论针对静止目标的搜索策略及数学模型。第3章讨论分布函数未知情况下的搜索策略。第4章讨论针对运动目标的搜索策略,并尝试将搜索问题与控制理论结合起来进行讨论。第5章介绍系统的控制理论的一些基本原理以及与搜索理论的交叉点。第6章给出了搜索理论在经济学和无线网络管理领域的一些应用。最后对全书做了一个总结并给出关于进一步研究的一些建议。《离散与连续空间中的搜索理论》包括了许多实例和算法,以及一个示范性的仿真软件包。 《离散与连续空间中的搜索
智能优化混合算法是一种以某类优化算法为基础,融合其他智能算法或理论的混合算法,可用于求解各种工程问题优化解。 梁旭、黄明所著的《现代智能优化混合算法及其应用》系统讨论了现今应用较为广泛的几种智能优化混合算法,主要内容来源于作者多年的研究成果,使读者比较全面地了解智能优化混合算法的相关知识及应用。《现代智能优化混合算法及其应用》理论联系实际,集知识性、专业性、操作性、技能性为一体,对智能优化混合算法的原理、步骤、应用等进行了全面且详细的介绍。 《现代智能优化混合算法及其应用》可作为计算机、自动控制、人工智能、管理科学和工业工程等专业的研究生及高年级本科生教材,也可作为从事计算智能、软件开发等优化相关专业研究人员和工程技术人员的参考书。
区间多目标优化问题普遍存在且非常重要,但已有的解决方法却非常少。采用进化优化方法求解区间多目标优化问题是近年来进化优化界的热点研究方向之一。《区间多目标进化优化理论与应用》阐述了用于求解区间多目标优化问题的进化优化理论与方法,主要包括:目标函数值为区间时,进化个体的比较、决策者偏好的融入及其在种群进化的应用,以及含有很多目标函数优化问题的降维转化与求解等。同时,《区间多目标进化优化理论与应用》还给出了不同方法在基准数值函数优化和室内布局的应用,以及全面详细的算法对比结果。为便于应用《区间多目标进化优化理论与应用》阐述的方法,书后附有部分区间多目标进化优化方法Matlab源程序。《区间多目标进化优化理论与应用》是部用进化优化方法解决区间多目标优化问题,特别是融入决策者偏好解决该问题的
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
《离散与连续空间中的搜索理论》讨论离散和连续空间中关于静止和运动目标的搜索策略,分析了目标的概率分布函数已知和未知的各种情况,重点介绍了搜索理论的基础知识和发展。 《离散与连续空间中的搜索理论》共分6章。章介绍搜索理论的产生、发展过程及研究现状。第2章讨论针对静止目标的搜索策略及数学模型。第3章讨论分布函数未知情况下的搜索策略。第4章讨论针对运动目标的搜索策略,并尝试将搜索问题与控制理论结合起来进行讨论。第5章介绍系统的控制理论的一些基本原理以及与搜索理论的交叉点。第6章给出了搜索理论在经济学和无线网络管理领域的一些应用。最后对全书做了一个总结并给出关于进一步研究的一些建议。《离散与连续空间中的搜索理论》包括了许多实例和算法,以及一个示范性的仿真软件包。 《离散与连续空间中的搜索
本书共分17部分,介绍了完全信息博弈、混合策略均衡、完全信息展开型博弈:理论;联盟博弈及其核心、完全信息展开型博弈:延伸与讨论、不完全信息展开型博弈、演化均衡等内容。本书对博弈论进行了严谨而又通俗的介绍,是适用于高年级本科生和研究生的入门教材。
数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过的几类主要数学模型进行了归纳总结。
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
《凸优化理论()》作者德梅萃·博赛克斯教授是优化理论的国际知名学者,现任美国麻省理工学院电气工程与计算机科学系教授,曾在斯坦福工程经济系和伊利诺伊电气工程系任教,在优化理论、控制工程、通信工程、计算机科学等领域有丰富的科研教学经验,成果丰硕。博赛克斯教授是一位多产作者,著有14本专著和教科书。《凸优化理论()》是作者在优化理论与方法的系列专著和教科书中的一本,自成体系又相互对应。主要内容分为两部分:凸分析和凸问题的对偶优化理论。