本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。
《运筹学导论(0版)》作为运筹学领域的佳作,是美国多所高校的运筹学教材用书,销售量一直名列前茅。原著作者长期从事运筹学的教学和科研工作,是业界的佼佼者。原著具有内容翔实、专业性强、应用价值高等特点,对靠前同类著作产生了重大影响。翻译出版该著作,对于丰富和发展我国军事管理学和运筹学理论和方法体系,完善军事管理学的定量研究手段,具有较大的理论价值和实践意义。译著可作为运筹学、管理学、系统工程等专业的教材,也可作为从事军事管理、经济管理等领域的研究人员的参考用书。
本书为主教材配套使用的习题集,作者针对此次再版《运筹学》的学习内容编写了每一章的习题及答案,共十二章,其中上篇为八章,下篇为四章。再基于主教材上、下篇的划分,在上篇结束部分编写了上篇知识点练习题及上篇知识点练习题答案;在下篇结束部分编写了下篇知识点练习题及下篇知识点练习题答案。另外,在本习题集的*后,在总结历年研究生考试题特点的基础上,编写了10余套综合模拟题及综合模拟题答案。本书适合与主教材配套使用,同时由于主教材被列为18年西南交大硕士研究生考试指定参考教材,也可供参加研究生考试的学生学习参考。
本书系统论述离散时间排队的思想原理和主要结果,建立了一个完整的理论框架.内容包括Markov 型、Geom/G/1 型、GlIGeom/c 型、D-BMAP/G/1 型等各种离散时间排队系统的建模和分析,并简要介绍了离散时间排队网络.除经典模型外,还详细讨论了近些年出现的休假和工作休假离散时间排队系统,并包含计算机通信网络和卫星通信系统性能分析的应用实例.其中部分内容是作者近年来的研究成果.本书叙述深入演出、论证严谨、图文并茂,注意先进性、系统性和实用性.
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
本书系统介绍变分分析的基本理论,讨论变分分析在最优化理论与算法分析中所起的基础性作用.变分分析部分包括宇窗空间与锥、集值映射、集合的变分几何、函数的广义微分、单值函数的Lipschitz 性质和集值映射的Aubin 性质、隐函数定理与系统稳定性.最优化理论部分包括最优性理论(含有Lipschitz 函数优化的Clarke 乘子原则以及均衡约束数学规划问题的最优性条件)、非线性规划的扰动分析、二阶锥的变分分析与二阶锥约束优化问题的扰动分析,以及半正定矩阵锥的变分分析与半定规划问题的扰动分析.最优化的算法部分包括Newton 方法和邻近点方法,邻近点方法部分介绍Moreau 包络、等式约束的非线性规划问题、非线性二阶锥约束优化问题与非线性半定规划问题的增广Lagrange 方法的收敛速度等.
“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂