罗斯所著的《数理金融初步(英文版第3版)》清晰简洁地阐述了数理金融学的基本问题,主要包括套利、Black-Scholes期权定价公式以及效用函数、资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法和基本思想系统地展示给读者。
stochaLstic Calculus of Variations(or Malliavin Calculus)consists,in brief,in constructing and exploiting natural differentiable structures on abstract Drobability spaces;in other words,Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment iS at the heart of mathemat’ical finance,and as differential calculus iS of paramount importance for the search of extrema,it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.The putation of price sensitivities(orGreeksl obviously belongs to the realm of differential calculus. Nevertheless,Stochastic Calculus of Variations Was introduced relatively late in the mathematical finance literature:first in 1991 with the Ocone-Karatzas hedging formula,and soon after that,many other applications alDeared in various other branches of mathematical finance;in 1999 a new irapetus came from the works of P.L.Li
A.H.施利亚耶夫编著的《金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“金融数学方面最深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“金融数学全书”。 第二卷有关“理论”的四章是:“金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住要害
期权是风险管理的核心工具。对期权定价理论作出杰出贡献的Scholes和Merton曾因此荣获1997年诺贝尔经济学奖。本书从偏微分方程的观点和方法,对Black—Scholes—Merton的期权定价理论作了系统深入的阐述。一方面,从多个角度、多个层面阐明期权定价理论的基本思路;另一方面,充分利用偏微分方程理论和方法对期权理论作深入的定性和定量分析,其中特别对美式期权,与路径有关期权以及隐含波动率等重要问题,展开了深入的讨论。另外,本书对所涉及的现代数学内容,都有专节介绍,尽可能作到内容是自封的。本书可用作应用数学、金融、保险、管理等专业研究生,也可供有关领域的研究人员和工作人员参考。
本书讲解了平面几何中的解题方法与技巧。
这是一本由数理金融学领域两位专家撰写的关于现代金融经济重要思想的复杂的而又极具可读性的教材。用一种非常清晰而又极具可读性的方式为我们介绍了现代金融市场的结构、背景及理论。共分为三篇。篇主要包括基础证券、金融市场机构、利率的概念、主要的数学模型以及各种测度市场交易风险和回报的方法等内容。第二篇主要讲述期权定价和套期保值,该部分类似的内容实际上在最近关于金融市场的书籍中都有所提及。第三篇主要讲述金融经济学的一个重要主题:利用均衡方法进行资产定价。该部分由于在期权定价和套期保值方面几乎没有直接的应用,因此,它们通常被关于金融数学方面的书籍所忽略,然而,该理论却能对市场参与者的行为以及价格在市场中的形成机理给出定性的认识。它既适用于硕士水平的课程也适用于初级博士的课程。同时,它还适
本书包括通用的数值分析(或称计算方法)课程的8个基本论题:插值、函数逼近、数值微积分、矩阵特征值计算、线性代数方程组、非线性方程与方程组、常微分方程和偏微分方程的数值方法。 本书的取材着眼于工科研究生可能的应用需求,除了坚持内容的科学性、严谨性外,写法上注意强调各类数值问题的提法,有助于研究生利用所学方法和理论去解决具体的应用问题;书中概念清晰,方法和公式的来龙去脉清楚,理论结果尽量深入浅出并联系应用,较难理解或内涵较丰富的部分,适当增加例题或给出启发式的引导;对每个论题划分出“基本教学内容”和“较深入内容或参考材料”两部分,给教学和学习(包括自学)提供了粗略指引。这是一本好教、好学并保证应有科学水平的研究生教材。 本书适合工科硕士生、非数学类的理科硕士生和工程硕士生作为
由世界一流的动态面板数据计量经济专家之一曼纽尔·阿雷拉诺教授奉献的这本书,对面板数据计量经济学的一些主要课题提供了一个现代的回顾。作者专注于线性模型,重点阐述了异质性和动态在面板数据分析中所扮演的角色。这本书有机地结合了方法和应用,对学院派和实践派同样适用。本书分为四个部分:部分关注的是静态模型,涉及面板数据中不可观测异质性问题以及如何利用面板数据分析方法解决这一问题、面板数据误差成分模型、面板数据的变量误差问题。第二部分考察的是带误差成分的时间序列模型。该部分章节涉及短面板中不可观测异质性与个体动态性之间的区分问题、时间效应的建模策略、,移动平均模型、协方差结构的推断、异质截距自回归模型的设定和估计以及初始条件和异方差假设对估计的影响。第三部分主要讨论了动态模型和先决变量
A.H.施利亚耶夫编著的《金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“金融数学方面最深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“金融数学全书”。 第二卷有关“理论”的四章是:“金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住要害
《金融中的数值方法和优化(英文)》旨在为读者介绍金融计算工具—基本数值分析和计算技巧,如期权定价、并突出了模拟和优化的重要性,用许多章讲述投资组合保险和风险估计问题。特别地,有几章用于讲述优化探索和如何将他们应用于投资组合的选择、估值的校准和期权定价模型。这些具体的例子让读者学习了解决问题的具体步骤,以及将这些步骤举一反三。同时,这些应用使得《金融中的数值方法和优化(英文)》的参考价值大大提高。