本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
本书内容覆盖了网格应用、编程工具以及网格的基础架构,许多内容都反映了作者的研究领域和成果。 在本书中,作者开创性地论述了在科学与工程领域中大规模资源共享和虚拟的问题,以及机构间的资源共享和技术需求中的安全、可靠和高效之间的关系。全书共有30 章(其中十多章是本版新增的内容),内容涉及网格的基本概念、架构原理和网格在科学、工程和商务领域的应用实例。本书详细描述了核心架构、网格资源管理、网格数据管理、网格信息服务,以及网格安全等多个方面的网格技术和高级工具,并集中讨论了网格技术的发展历程、计算平台以及对等网络和网络的基础架构。 本书既可以作为高等院校理工科高年级本科生以及研究生的教材和教学参考书, 又可以作为网格计算及相关领域科研人员的参考书。
This book is intended to provide the fundamental material for young researchers of the quaternion matrix eigenvalue problem.Starting from the origin of the right eigenvalue problem of quaternion matrices,we introduce the basic theory and methods of quaternion matrices in the first chapter.In the second chapter,we study the eigenvalue problem of general quaternion matrices,including the structure-preserving QR algorithm,the quaternion QR algorithms,etc.In the third chapter,we research the eigenvahie problem of Hermitian quaternion matrices,with proposing two kinds of direct methods using the Householder transform and two iterative methods: Jacobi algorithm and Lanczos method.In the last chapter,we provide several practical application models,such as two dimensional principle component analysis and color image inpainting,which relying on solving the quaternion eigenvalue problem.The writing of this book is straight forward and is addressed to readers who have a basic graduate mathematics background.Alternativel
《离心叶轮内流数值计算基础》根据作者多年来在叶轮机械与流体力学相关领域的积累和研究成果提炼而成。主要内容包括流体基本属性、基本方程组的推导、网格生成的代数法与微分法、网格量的计算、模型方程的分类及求解特征、差分及其稳定性分析、有限体积法的基本原理、不可压缩N-S方程的离散计算、边界条件的实施、代数方程系统的迭代法、动-静子耦合流动模型与算法,以及并行编程基础等。《离心叶轮内流数值计算基础》注重理论体系的完整、系统和实用性,将抽象的理论与具体实例相结合、数理基础与当前热点相结合,强调研究思路与解决方法的贯通,既可作为教学用书,也可供科研参考。
本书总结了近十几年来有限元高精度算法(即超收敛和超收敛后处理)的主要研究成果,共十二章。前五章介绍超收敛和超逼近理论,包括高次矩形的插值误差的弱估计和超逼近估计、双线性元的超收敛性和外推、高次三角形元中的问题等内容;后七章介绍超收敛后处理理论,包括调和方程边值问题的概率算法、多维离散Green函数理论、三维问题的超逼近和超收敛性、后验误差估计和超收敛等内容。 本书可供计算数学、应用数学、计算物理和计算力学等专业的高年级大学生、研究生、教师与科技人员阅读,也可供研究泛函分析和函数逼近理论的学者参考。
This book grows out of the lectures the first author gave in the summer of 2002 in the Institute of Computational Mathematics of Chinese Academy of Sciences.The purpose of the lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method after the summer course.Some of the materials of the book have been taught several times by the authors in Nanjing University and Peking University.The current form of the book is based on the lecture notes which are constantly updated and expanded reflecting the newest development of the topics through the years.