《光子晶体应用理论研究》以光子晶体功能器件的理论设计为切入点进入光子晶体研究领域,研究内容包括如下相关的四个方面: (1)仿真平台建立。光子晶体是一个复杂的多组元结构,难以得到其能带结构及传输特性的解析解,通常只能采用近似的处理方法或数值模拟。为了对光子晶体功能器件进行深入理论分析,首先需要建立完整的光子晶体设计和仿真平台。对于实际的光子晶体三维数值模拟,FDTD算法需要更大的存储容量和更长的计算时间,为了解决此问题,需要建立高性能并行计算平台。 (2)功能器件原理结构设计。本课题主要从类比、优化改进、提出等三个途径开展光子晶体功能器件原理结构设计:类比传统介质波导波分复用器设计光子晶体波分复用器;优化Y.H.Lee研究小组提出的电激励光子晶体激光腔结构;研究新的光子晶体波导腔原理和新
本书较为系统地阐述了晶体材料中存在的各种对称性和晶体的取向特性,并以无机晶体材料为背景,介绍了常见的晶体结构特征及晶体结构检测原理。在完整晶体结构的基础上,还分析讨论了晶体的缺陷特征,包括点缺陷、位错的弹性特征、晶界的取向特征等。 借助本书,读者可从材料工程角度对材料晶体学和晶体结构知识有较深入的了解和程度的知识更新,为在材料科学与工程领域中进行新材料的研究和新工艺的开发奠定良好的晶体学基础。 本书可作为材料专业硕士研究生的专业基础教材,或材料专业本科学生、博士研究生的专业参考书;也可供从事材料科学与工程研究的科研人员、高等学校教师或相关企业工程技术人员阅读。
《Springer手册精选系列·晶体生长手册(第4册):蒸发及外延法晶体生长技术()》的主题是气相生长。这一部分提供了碳化硅、氮化镓、氮化铝和有机半导体的气相生长的内容。随后的PartE是关于外延生长和薄膜的,主要包括从液相的化学气相淀积到脉冲激光和脉冲电子淀积。
《Springer手册精选系列·晶体生长手册(第4册):蒸发及外延法晶体生长技术()》的主题是气相生长。这一部分提供了碳化硅、氮化镓、氮化铝和有机半导体的气相生长的内容。随后的PartE是关于外延生长和薄膜的,主要包括从液相的化学气相淀积到脉冲激光和脉冲电子淀积。
开展负折射材料的研究具有重要的科学意义和实际应用效益,符合科学研究发展的趋势,是目前物理学界的前沿性课题。光子晶体作为未来集成光路的基础材料,在光通讯、微波通讯、光电器件、光电子集成以及国防隐身材料等领域具有十分广阔的应用前景。鉴于此,《负折射光子晶体的基础研究》的主要内容是二维光子晶体的负折射及反常Doppler效应的实验研究问题,在理论上设计负折射光子晶体模型、加工和制备光子晶体实物及理论上严格设计整套实验方案的基础上,结合光学、电子技术和机械知识,建立了测量光子晶体的负折射实验及反常Doppler效应实验验证的光学系统,在国际上首次证明了负折射光子晶体确实存在反常Doppler效应。(该成果已发表在国际知名期刊NaturePhotonics,2011,5(4):239—242上。)《负折射光子晶体的基础研究》适合高等院校物理和光学