本书涵盖了2016 2025年考研数学一、数学二、数学三的全部真题,精选了1987 2015年考研各卷种中有一定难度或代表性的真题,并配有详细解析,供考生进行练习.本书将真题按考点分类,每一节均分为十年真题、考点分析、知识梳理、方法探究、真题精选五个部分.不但梳理了《全国硕士研究生招生考试数学考试大纲》所要求的每一个知识点,而且通过例题详细讲解了主要的方法,并对每一节内容作了小结,归纳考研近年来的命题趋势,旨在使考生全面准确地了解考研数学。
内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
内容简介 眼睛是人们感知世界的窗口,被称为“心灵的窗户”。然而,眼睛却非常娇嫩,需要人们悉心呵护。 本书用形象的比喻、诙谐幽默的描述向读者传递眼睛的相关知识。首先,阐释了自然界中各种动物的奇特眼睛及真给人类带来的启迪,以唤起读者对眼睛的好奇和兴趣。其次,描述了人类眼睛鲜为人知的“奇闺趣视”,从科学的角度解释日常用眼过程中遇到的一些问题,进一步激发读者不断去探索眼睛的奥秘。再次,用深入浅出的方法,从专业角度介绍眼睛的结构、工作奥秘以及人类眼睛成长与衰老的过程。最后,介绍了眼睛常见疾病的陆治和相 目录 目录总序 / i前言 / iii章 探秘神奇的眼睛 / 001节 动物世界奇特的眼睛 / 002一、视力“动”“静”迥
本书为日本数学家、沃尔夫奖、高斯奖、京*奖得主伊藤清的数学思想文集。书中梳理了他学习数学、走上数学研究道路的经历,收录了他关于“数学与科学”“直观与逻辑”“纯粹数学与应用数学”“数学的科学性与艺术性”等方面的思考,同时也完整记录了他创立的“伊藤引理”的过程与感悟。本书是了解伊藤清数学思想的珍贵资料,也可作为了解概率论相关概念与发展的读本。本书适合数学专业的大学师生阅读,也可作为一般读者了解数学的启蒙读物。
理解数学需要具备一种纯粹的感觉,即 数感 。本书为日本数学家、菲尔兹奖与沃尔夫奖得主小平邦彦先生的思想随笔文集,书中收录了小平邦彦先生对数学、数学教育的深思、感悟文章,记述了数学家对 数学 数感 的独到理解,文笔幽默,深入浅出。同时,书中还辑录了小平邦彦先生在普林斯顿高等研究院时期,与赫尔曼?外尔等数学大家交流的趣闻轶事,对深入理解数学、数学教育具有深刻启示。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
《数学女孩》以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的初等数学科普书”。内容涉及数列和数学模型、斐波那契数列、卷积、调和数、泰勒展开、巴塞尔问题、分拆数等,非常适合对数学感兴趣的初高中生以及成人阅读。
作者从三个方面:数、数与式的运算、数学学科阐述了数学概念的来源,以丰富的史料和通俗易懂的语言,通过图文并茂的形式,展示了数学主要概念产生的缘由与发展的历程。之所以写这本书,是因为数学概念是数学的核心内容,数学概念的教学与学习十分重要。但是,数学概念的教学与学习不能成为死记硬背的教条或单纯演算的训练,这样无助于对数学的理解,也无助于培养独立思考能力。教师和学生应该知道数学概念是从哪里来的,又是怎样演化和完善的。要知道,一个数学概念的形成往往需要一个过程,有时是一个极其复杂的过程。这个过程正是数学发展的过程,了解了这个过程可以使人们更加走近数学,正确认识数学;会让我们感到数学是活的东西而不是死板的玩意;进而开拓思维,激发兴趣,更好地学习数学。
八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语
本书由北京大学信息科学技术学院副院长陆俊林教授担任主编,汇聚北大信息学院名师智慧结晶,并特邀北大附中资深教师团队进行教学适配性优化,全方位展现信息学科的学术魅力与实践价值。本书系统展现了信息技术的过去、现在与未来。 全书分为硬件篇、软件篇、应用篇三大板块,涵盖从芯片设计、人工智能到量子通信等20个前沿领域。硬件篇介绍了智能芯片的进化、类脑计算的生物启发、光子芯片的光速革命及碳基集成电路的突破性前景。软件篇聚焦数字世界的构建逻辑,从操作系统底层原理到机器学习算法,再到互联网的商业模式演进,揭示代码如何重塑文明。应用篇则呈现技术落地的缤纷实践:虚拟现实打破虚实界限,脑机接口连接思维与机器,量子技术挑战计算极限,而AI书法与艺术字生成则展现了科技与人文的碰撞。 本书以杨芙清、王阳
打开这本书的读者可能已经对数学产生了一定的兴趣,在以往的学习中你也许体会到了数学的非凡魅力,然而你也可能心存疑惑:数学这座恢弘的大厦是如何建成的,其中到底装了哪些奇珍异宝? 代数主要关注数字和变量间的运算关系,也是与实际生活联系非常紧密的一个数学分支。在本书中,我们将通过代数这个窗口,带你踏上一段奇妙的数学探索之旅。这段旅途将穿越古希腊、古埃及、印度以及阿拉伯地区,我们将认识毕达哥拉斯、柏拉图、欧几里得、阿基米德、丢番图、斐波那契等伟大的数学家以及在数学发展中做出过重要贡献的杰出人物,我们将看到数学源远流长而又生机勃勃的一面。还等什么,让我们开始吧。
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。 本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过**简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。 本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
《微积分的历程:从牛顿到勒贝格》介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 br 《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
三角学是一个古老的数学分支,它美丽而又神秘。 本书从历史发展的角度展现了三角学与其他诸多学科的紧密联系,阿涅西的女巫、高斯的启示、芝诺的遗憾……一连串有趣的故事构成了一幅美丽的画卷。全书共15章,历史、理论、趣闻、应用尽含其中,涵盖了三角学的所有精华部分。品读此书,你会感叹数学之美、人类之聪慧、科学发展之不易。 本书适合所有对数学特别是三角学感兴趣的读者阅读。
在2002年一篇曾引发数学界巨大反响的文章《一个数学家的叹息》中,保罗·洛克哈特猛烈抨击了美国中小学数学教育的现状:学生只是被要求记住公式,并在练习题中反复套用,而这一创造性过程应有的兴奋、喜悦乃到痛苦和挫败却不见了。 在洛克哈特看来,数学是一门艺术,而老师教授数学的方法应该是,向学生诚实地传递自己对于这门学科的热爱,激发和激励他们与生俱来的好奇心,并帮助和引导他们实际投身到这段迷人的旅途中去。 《度量 一首献给数学的情歌》正是洛克哈特这一思想的体现。他对数学的热爱在字里行间显露遗,同时他也不讳言旅途的艰难。《度量 一首献给数学的情歌》分为两个部分,分别介绍了对形状和运动的度量。他以平实的语言将几何学和微积分的复杂概念以及两者之间的精妙关联解释得清晰易懂,生动展示了数
本书是针对当前新工科教学改革的背景和普通高等院校的教学实际而编写的一本教材.全书共有7章,内容包括行列式、几何向量、矩阵、线性方程组、相似矩阵与二次型、曲面与空间曲线、线性空间与线性变换,前6章都有计算机求解与绘图计算机求解与绘图.每节后安排习题,每章后有总复习题,并在教材最后给出了部分习题和总复习题的参考答案.此外,本书以附录的形式介绍了MATLAB的基本使用方法、解析几何产生的背景及其基本思想,线性代数的发展简史等. 本书结构合理、条理清晰、论证严谨,内容翔实,可读性强,便于教学,重视代数与几何的融合,通过应用案例解析及MATLAB实现,把抽象、枯燥的理论知识与实际应用紧密联系起来,有利于提高学生解决实际问题的能力.附录提供了解析几何与线性代数发展简史的阅读材料,不仅可以帮助学生探究代数与
本书是与《高等数学(上册)(慕课版)》配套的学习指导书,是根据工科类高等院校“高等数学”课程的基本要求,结合编者多年的教学经验编写而成的。上册共6章,第1章为函数、极限与连续,第2章为导数与微分,第3章为微分中值定理与导数的应用,第4章为不定积分,第5章为定积分及其应用,第6章为常微分方程.每章包含知识结构、重点与考点分析、典型例题与方法归纳、习题全解4个部分,对学生复习所学知识、备考研究生数学考试做了很好的归纳。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的数学科普书”。 《数学女孩4:随机算法》以“随机算法”为主题,从纯粹的数学和计算机程序设计两个角度对随机算法进行了细致的讲解。内容涉及排列组合、概率、期望、线性法则、矩阵、顺序查找算法、二分查找算法、冒泡排序算法和快速排序算法等。整本书一气呵成,非常适合对数学和算法感兴趣的初高中生以及成人阅读。
本书介绍数学中的三大悖论(毕达哥拉斯悖论、贝克莱悖论、罗素悖论)与三次数学危 机,以时间为序,以环环相扣的数学家轶事为纲,带大家了解数学发展史,理解悖论的巨 大作用,以及认识欧几里得几何、无理数、微积分、集合论等的来龙去脉。书中穿插大量 数学家的逸事,融知识性与趣味性于一体。本书这一版专门添加附录介绍了哥德尔证明。
从基本的矿物、植物、动物以及人类到螺旋、旋涡、芽苞等具有复杂形状的事物,本书以 500 多张彩色图片展现了各种事物的几何学特性。作者通过对大自然最简单的观察以及最细腻复杂的测量等手段,意欲告诉我们可以从身边的任何事物中找到几何学的身影;他还利用射影几何学证明了,大自然中所有奇奇怪怪的体态其实都是依据最基本的几何学原理“制造”而成的,而这些原理之间的重要差异则造就了我们宇宙中如此纷繁多样的形状。