本书通过通俗易懂的语言、丰富的图示和生动的实例,拨开了笼罩在机器学习上方复杂的数学“乌云”,让读者以较低的代价和门槛入门机器学习。本书共分为11章,介绍了在Python环境下学习scikit—learn机器学习框架的相关知识,涵盖的主要内容有机器学习概述、Python机器学习软件包、机器学习理论基础、k—近邻算法、线性回归算法、逻辑回归算法、决策树、支持向量机、朴素贝叶斯算法、PCA算法和k—均值算法等。本书适合有编程基础的读者阅读,尤其适合想从事机器学习、人工智能、深度学习及机器人相关技术的程序员和爱好者阅读。另外,相关院校和培训机构也可以将本书作为教材使用。
《税法学原理——税法理论的反思与重构》分为上下两编,上编为税法基础理论,下编为税法基本制度。上编论述了税法基本理念、税法基本原则、税法学研究范式、税收法律关系、课税依据与税收本质、纳税人的权利与义务以及税法与社会的良性互动;下编论述了个人所得税制度、企业所得税制度、增值税制度、营业税制度、消费税制度、其他税收制度以及税收征管制度。本书也论述了现行的税收制度,并结合作者的理论观点提出了完善具体税收制度的基本构想。
本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。部分介绍基本的思路,包括神经网络底层的数学知识,第2部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第3部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在Raspberry Pi上工作。
本书从基本概念、内部实现和实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了N、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,全面介绍了TensorFlow生态系统的发展。