本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
《高等数学疑难分析与解题方法(上)》是学习高等数学课程的一本很好的辅导书。《高等数学疑难分析与解题方法(上)》与同济大学《高等数学》第六版同步,上册内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用与微分方程。 《高等数学疑难分析与解题方法(上)》的特点是着重数学思想、方法的理解与应用,在疑难分析中,对概念理解与方法运用中可能产生的问题都作了详细的阐述与诠释。在解题方法中,不仅对“同济六版”中的全部习题作了详尽的解答,还补充了相当数量的例题,对高等数学的解题方法作了精彩的演绎、归纳、评点,相信读者通过学习《高等数学疑难分析与解题方法(上)》,将完全掌握高等数学的思想与方法。 《高等数学疑难分析与解题方法(上)》还附有历年研究生入学
随着数学的不断发展,不定方程的重要性日益显著。现代数学的重要分支,如代数数论,代数几何,表示理论……都在这里交汇。不定方程几乎成为一块试金石,用以检验新的数学理论和新的数学方法。 本书是为丰富中学生的数学知识而写的小册子。 为便于学生学习,尽量使用初等方法来讨论在初等数学(特别是各级数学竞赛)中经常遇到的不定方程。学生阅读不定方程所需的一些整数知识,在本书的附录中也作了阐述,可供参考。
朱开永、王升瑞主编的《高等数学(上)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为上册。内容包含了函数与极限、一元函数微分学以及一元函数积分学。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,必须够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以作为高等工程技术教育、成人教育的本科教材
《高等数学》是高等院校一门传统的基础课。它在传授知识、启发学生思维和培养学生能力等方面都具有重要的作用。本书的特点是:文字通俗易懂,便于阅读,为减少课堂教学时数创造条件,以适应精讲与自学相结合的教学改革要求;内容丰富,论证严谨,逻辑性强,并采用了一些现代数学的符号,使叙述更为简洁;在正文中的部分内容前面记有星号,作为教师根据教学的实际情况,进行删减参考;各章后面备有附注,以开拓学生视野,有利于贯彻因材施教原则;例题经过认真选择,具有多样性,有些带有一定的臷,以启发和培养学生解题的能力;另有与本书相配套的《高等数学习题集》,其编排次序与本书章次完全一致,已由上海交通大学出版社出版。
《高等数学(理工类第3版)》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验,每册书后附有习题答案与提示。本书是其中的《高等数学(理工类下第3版)》,由杨海涛主编。 《高等数学(理工类下第3版)》知识系统、体系结构清晰、详略得
为了适应当前高职高专土建类专业教学改革的需要,本书以较少的篇幅涵盖了函数和极限、导数和微分及其应用、不定积分和定积分及其应用、简易的微分方程、向量与空间解析几何初步和多元函数微分法及其应用等基础理论的主要内容,共10章,每章均配有练习题和复习题(皆附有答案)。 本书选材适当,主次分明,重点突出基础性、系统性、应用性和工具性,且行文力求简明通晓,以达到易教易学、学以致用的目的。 本书可作为高职高专教育土建类专业的高等数学课程的教学用书,亦可供同层次的其他专业和各类成人高校或参加高等教育自学考试的读者作为教学和参考用书。
本书以大学高等代数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
本版《高等数学》上、下册系高等院校“新高职”或“一般本科”高等数学课程使用的教材,本教材基本保留了“高等数学”课程内容的传统风格,编写时参照了《高等数学课程教学基本要求》.本书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及向量代数与空间解析几何等7章;下册包括多元函数微分学、重积分、级数、微分方程及附录中的曲线积分与曲面积分等5章.全书基本上覆盖了现行理工科类院校《高等数学》课程(本科生)的全部教学内容。 本书既适用于全日制普通高等理工科院校及经济、管理类院校的本科生作为高等数学课程的教材,又可以作为网络高等教育、函授、高等职业技术教育或成人继续教育的大专生作高等数学课程的教科书。