《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书内容简介:This book is an outgrowth of a course which I gave atOrsay duringthe academic year 1 966.67 MY purpose in those lectureswas to pre-sent some of the required background and at the sametime clarify theessential unity that ests between several relatedareas of analysis.These areas are:the estence and boundedness ofsingular integral op-erators;the boundary behavior of harmonicfunctions;and differentia-bility properties of functions of severalvariables.AS such the moncore of these topics may be said torepresent one of the central develop-ments in n.dimensional Fourieranalysis during the last twenty years,and it can be expected tohave equal influence in the future.These pos.
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
本书全面地介绍密度泛函理论的基本内容,共分8章。第1章泛函的微积分,提供所需要的泛函的数学基础知识。第2章量子化学基础,补充在一般物理化学以上的量子化学基础知识。第3章量子力学的密度泛函理论,从霍亨堡和库恩的两个定理出发,着重讨论库恩-沈方法,并介绍交换相关能泛函模型,主要采用局部密度近似,包括普遍化梯度近似,接着进入计算。最后是应用举例。第4章统计力学基础,补充在一般物理化学以上的统计力学的基础知识。第5章统计力学的密度泛函理论,首先建立两个生成函数,巨势泛函和内在自由能泛函,并引出巨势极小原理,形成基本框架。对于自恰场理论,由于也是研究非均匀流体的重要手段,因此也做简要讨论。第6章内在自由能泛函模型,详细讨论局部密度近似,包括普遍化梯度近似。针对宏观系统的特点,还进一步介绍更符合
Sincethepublicationofmylecturenotes,FunctionalDifferentialEquationsintheAppliedMathematicalSciencesseries,manynewdevelopmentshaveoccurred.Asaconsequence,itwasdecidednottomakeafewcorrectionsandadditionsforasecondeditionofthosenotes,buttopresentamoreprehensivetheory.Thepresentworkattemptstoconsolidatethoseelementsofthetheorywhichhavestabilizedandalsotoincluderecentdirectionsofresearch.
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.