本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
The book is a continuation of development of" Boundary value problems for nonlinear elliptic equations and systems" and "Linear and quasilinear equations of hyperbolic and mixed types ".A large portion of the work is devoted to boundary value problems for general elliptic plex equations of first,second and fourth order,initial-boundary value problems for nonlinear parabolic plex equations of first and second order.Moreover,some results about first and second order plex equations of mixed (elliptic-hyperbolic) type are investigated .Applications of nonlinear plex analysis to continuum mechanics are also introduced.
本书主要研究满足开集条件的自相似集的结构,从Hausdorff测度和上凸密度的计算与估计到其内部结构的理论研究,都作了比较全面的阐述.全书共分四章。章介绍基本定义、符号和基本命题;第2章讨论自相似集;第3章讨论上凸密度;第4章讨论自相似集的结构及相关问题.两个附录分别介绍了集合论、点集拓扑和测度论的基础知识。 本书可作为高等院校分形几何方向研究生、教师的教学用书,也可供相关方向科研人员和工程技术人员阅读参考。
本书以真解析函数为主线安排了复数与扩充复平面、复变函数与解析函数、复变函数沿有向曲线的积分、级数、奇点与留数、共形映射共6章内容,从微分、积分、级数、在一点处、在一个收敛点列、在一个区域中、共形映射等10个不同的层面来逐步深入地展开对解析函数的讨论,并利用解析函数的留数定理来计算一元实变函数的积分。
本书为普通高等教育“十二五”规划教材。全书共九章,主要内容包括:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换,数学软件在复变函数与积分
全书分为三章: 章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了R n中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“ Lebesgue 积分及其性质”定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数” 多体会数学创新方法,本书提供了四个附录供学生自学,也便于教师概略性地选讲。 本书的适用对象为数学与应用数学专业本、专科学生。因本书注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。