本书介绍了 PostgreSQL 内部的工作原理,包括数据库对象的逻辑组织与物理实现,进程与内存的架构。并依次剖析了几个重要的子系统:查询处理、外部数据包装器、并发控制、清理过程、缓冲 区管理、WAL、备份及流复制。本书为 DBA 与系统开发者提供了一幅全景概念地图,有助于读者形 成对数据库实现的整体认识,亦可作为深入学习 PostgreSQL 源代码的导读手册,对于理解数据库原 理与 PostgreSQL 内部实现大有裨益。 本书适合数据库开发人员及相关领域的研究人员、数据库 DBA 及高等院校相关专业的学生阅读。
在这本书里,读者将会跟随作者一同对Oracle数据库的相关知识进行梳理,很终共同提炼出必须很先掌握的那部分知识,无论你是数据库开发、管理、优化、设计人员,还是从事Java、C的开发人员。接下来作者再将这部分知识中很实用的内容进一步提炼,浓缩出很精华的部分,分享给大家。这是“二八现象”的一次经典应用。这部分知识就是Oracle的物理体系结构、逻辑体系结构、表、索引以及表连接五大部分。通过阅读本书中的这些章节,读者将会在短时间内以一种有史以来很轻松的方式,完成对Oracle数据库的整体认识,不仅能解决工作中的常规问题,还能具备的设计和调优能力。通过对这些章节的学习,读者在Oracle的学习中会有极大的收获。然而,作者更希望看到的是:让读者的收获,不止Oracle。为达到此目的,作者精心将全书分成上下两篇,刚才所描述的具体知
本书采用SAS公司的统计软件包JMP?Pro进行实践性应用,使用引人入胜的实际案例来构建关键数据挖掘方法(尤其是分类和预测的预测模型)的理论及其实践理解。本书所讨论的主题包括数据可视化、降维、聚类、线性和逻辑回归、分类和回归树、判别分析、朴素贝叶斯、人工神经网络、增量模型、集成算法以及时间序列预测等。
聚类是数据挖掘领域的一个重要分支。《数据聚类》全面系统地介绍聚类的主要方法。首先,对涉及聚类的各个方面进行简略的综述;然后,对各类聚类算法进行较详细的讨论。《数据聚类》主要内容分为部分:部分是经典算法部分(第2~6章),讨论k-均值、DBSCAN等传统算法;第二部分是高级算法部分(第7~12章),讨论半监督聚类、高维数据聚类、不确定数据聚类等;第三部分是多源数据聚类部分(3章),主要讨论多视角聚类和多任务聚类。《数据聚类》可供数据科学与人工智能等领域的研究人员、工程技术人员、相关学科研究生和基础较好的高年级本科生参考阅读。
作者围绕着机器能否拥有心智这一问题,深入浅出地介绍了人工智能方面所取得的成就以及面临的困境。通过重新审视那种机器可以拥有心智、甚至意识的观点,对人工智能研究前景进行了深刻的反思。
本书从工业测控的实际应用出发,系统地讲述了虚拟仪器软件LabVIEW的测控应用技术。首先介绍了虚拟仪器的含义、功能、结构、特点和常用开发平台,接着系统地讲述了LabVIEW程序设计基本知识,然后通过基于板卡的测控系统、串口通信测控系统等19个典型应用实例,详细地讲解了利用LabVIEW设计测控程序的方法,帮助读者完整地掌握LabVIEW测控应用实战技术。书中提供的测控应用实例都有详细的操作步骤,读者可以按步骤用LabVIEW实现各种测控功能,因此实践操作性强是本书的一大特色。本书内容丰富,论述深入浅出,有较强的实用性和可操作性,可供自动化、计算机应用、电子信息、机电一体化、测控仪器等专业的高等院校师生阅读,还可供从事计算机测控系统研发的工程技术人员参考。
《多传感器数据融合系统:EKF及模糊决策应用分析》提供了一个新颖的方法来解决传感器数据融合问题,即在动态决策机制基础上建立了态势感知模型,并利用态势感知、个人和环境因素之间的关系做出的安全决策。重点阐述了融合系统中如何利用模糊逻辑来制定决策。原书作者详细介绍了扩展卡尔曼滤波(EKF)的应用分析及基于模糊决策的多传感器数据融合系统。在研究中,《多传感器数据融合系统:EKF及模糊决策应用分析》选择了几个相关的传感器(激光,声纳和射频传感器)监测多个动态代理区域的安全状态,这个系统利用了传感器的相性和互补性,尤其是当使用异构传感器时,在性能上有很大的改进。
本书是在作者多年从事数据挖掘行业实践和相关科学研究的基础上编写而成,书中包括数据挖据理论研究及实际应用的现状分析、研究内容的组织框架、研究方法与技术路线的描述、数据挖掘理论及应用的综述、不确定性理论、多目标优化的分类器方法、模糊多目标优化的分类器模型和算法、基于粗糙集和统计贡献度的特征选择算法、基于粗糙集预处理和粗近似的多目标优化的分类器模型和算法以及基于模糊化、核方法和惩罚因子的多目标优化的分类器模型和算法等内容。本书含有不确定性多目标优化的数据挖掘在信用评分、Web客户忠诚度分析、蛋白质交互的热点区域预测以及重大疾病的医疗诊断和预测等几个经典领域中的实际应用的描述。最后,通过对研究内容和实际应用效果的总结,展望了进一步研究和应用的方向。本书可供从事数据挖掘、机器学习与知识工
本书重点介绍数据质量管理与安全管理的理论及应用。首先通过数据管理现况和问题的分析,提出数据质量管理的步必须是将各种来源的数据标准化,具有统一的数据格式和规则。书稿中强调了提高数据质量不仅可提高信息系统的质量,还可提高经营活动的质量。需要制定质量管理计划或执行具体的质量管理活动。定义了数据质量的准确性、一致性、可用性、可达性、及时性、安全性这6个标准以及对应的管理流程,划分了5个能力成熟度的等级,界定了从管理者到执行者等各个质量管理活动和责任。提出多项数据质量管理主要技术和各国实用案例,还进一步在Orange数据库中实践了数据质量诊断流程。书稿后半部针对日益增长的数据库安全性的需求,提出了安全管理系统构建、访问控制,数据伪装等具体可行的技术手段,最后还将数据安全技术推广到大数据的应用场景
特征选择是机器学习的重要研究内容,有着广泛的应用价值。特征选择主要从数据(尤其是高维数据)中选取有效特征来表示数据,从而提高机器学习算法的性能。《高维数据的特征选择:理论与算法》以重庆工商大学等单位的机器学习、图像处理课题为基础,系统地介绍特征选择的基本概念,以及相关的理论和算法,也对它的前沿研究(如无监督特征选择)和其在计算机视觉中的应用进行详细介绍,最后对特征选择的发展方向进行展望。 《高维数据的特征选择:理论与算法》理论联系实际,对教学、科研具有重要指导意义,可作为高等院校和科研机构从事机器学习的学者的参考书,亦可供从事大数据分析(如基因数据、计算机视觉)的专业技术人员参考。
我们能相信统计么? 抛了5次硬币,结果都是正面,抛硬币是否肯定是正面?如何从高层的统计指标看透数据后面的本质?如何在大数据时代获取战略制高点,确定自己的职业发展定位?从一个互联网公司数据分析师的成长经历,为您娓娓道来,数据分析中的奇闻趣事、心得总结、方法技巧与哲学感悟。