本书以“自然观察”为主题,以新颖的视角切入,完美地将艺术性、知识性融于一体,以精彩直观的图片彰显大自然之美,以生动的文字传递自然科学的魅力讲述自然世界的生物百态。内容深入浅出,带领小读者亲近大自然,享受发现与探索的乐趣。
《泛函分析(英文版)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。 本书可供大学数学专业、应用数学专业和计算数学专业的高年级学生、研究生、教师以及相关的科技工作者阅读、参考。
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校教材)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校教材)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些的案例尽可能避免。《同调论(第2版)》最终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不动点
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
本书是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含 Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理, Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。 本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助
本书是Folland教授的名著《实分析》的第二版。与版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。