《时滞微分方程的分支理论及应用》简要介绍时滞微分方程的基本理论并重点阐述分支问题研究的主要方法。在基本理论中,介绍了包括初值问题解的存在性、整体解的存在性、线性自治系统谱分解理论和线性稳定性理论、半动力系统和稳定性理论等;围绕分支问题的研究,主要介绍了指数多项式的零点分布的分析方法、建立在中心流形上的局部Hopf分支理论、以等变拓扑度理论为基础的全局Hopf分支理论、高余维分支的分析方法等。《时滞微分方程的分支理论及应用》将若干典型实例与研究成果相结合介绍了上述理论的具体运用,读者可以从中学会和把握非线性动力学研究的基本方法。 《时滞微分方程的分支理论及应用》可供从事微分方程与动力系统研究的学者和科研工作者使用,也可作为研究生的教材和参考书。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了国内外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课