在高等学校数学系的教学改革中,基础课的教学内容与教学方法的改革和现代化,始终是教学改革的中心环节。 北京师范大学数学系在长期的教改实践中,不断地总结经验,同时借鉴了我国一些数学家的重要思想,初步形成了如下的基本看法,这就是用现代数学的思想、观点和方法(包括适当运用现代数学的语言),对现行基础课的教学内容与体系进行改革,在保持基础课内容的基本系统性和完整性的基础上,为学生打开一个通向现代数学的窗口。 基于这个基本看法,北京师范大学数学系编著的系列基础课教材,陆续在北京师范大学出版社出版.本书正是这套系列教材中的一部。
丢番图问题主要从代数几何进行考虑。书中涵盖了一些研究该课题的基础方法,如高度理论, Néron函数及其在一些经典定理中的应用,如Mordell-Weil 定理、关于积分点的西格尔定理、希尔伯特的不可约定理、Roth定理及其他。该书取代了 Diophantine Geometry,涵盖了许多重要的新资料,如Néron函数理论及Tate和 Silverman的研究结果。目次:值;值的恰当集
罗巴切夫斯基、库图佐夫编著的《罗巴切夫斯基几何学及几何基础概要》讲述罗巴切夫斯基几何学及几何基础概要,共为八章,章与欧几里得公设等价的一些命题第二章关于罗巴切夫斯基几何的一些事实第三章在罗巴切夫斯基平面上的相互位置,第四章罗巴切夫斯基几何的面积论,第五章欧几里得《几何原本》概观第六章基本对象,基本对象间的基本关系及几何公理,第七章几何体系的解释观念,第八章公理的协和型和独立性,同构。《罗巴切夫斯基几何学及几何基础概要》适合大、中学师生及数学爱好者的使用和收藏。
这本书旨在让读者清晰明了地接触广义相对论,广义相对论的引入,从大爆炸到黑洞,这样很容易激起读者对物理学的浓厚兴趣。附录中提供了大量的数学材料来帮助读者理解正文,而且附录的很多部分本身也是独立完整的。 本书的结构,章主要介绍狭义相对论和基本张量代数,包含一个场论的简要概述。紧接着的两章引入流形和曲率,包含一些具有激发性的物理知识,但主要目标是建立数学框架。第四章引入广义相对论,并且给出一些择一性定理的讨论。紧接着的四章主要讨论广义相对论的三大主要用途:黑洞,扰动理论和引力波,以及宇宙学。这些章节都贯穿有试验性结论的讨论,使得这些理论的实用性马上显现出来。 本书很适合物理系高年级本科生、研究生以及对广义相对论感兴趣的读者。 注:本书为全英文版。
离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。 《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及重要的相关结果。 本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。 本书的显著特色包括: 500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;
黄家礼编著的《几何明珠(第3版)》以的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省论著一等奖;第二版于2000年由台湾九章出版社出版。
《辛几何讲义》是美国著名数学家shlomosternberg于2010年在清华大学教授辛几何的讲义,分为两个部分。部分(章~0章)介绍了辛群、辛范畴、辛流形和kostant-souriau定理等内容;第二部分(1章~6章)分别讨论了marle常秩嵌入定理、环面作用的凸性定理、hamiltonian线性化定理和极小偶对。 《辛几何讲义》可供从事辛几何和微分几何相关领域研究的学者参考,也可作为高年级本科生和研究生的教材和参考书。
这本书旨在让读者清晰明了地接触广义相对论,广义相对论的引入,从大爆炸到黑洞,这样很容易激起读者对物理学的浓厚兴趣。附录中提供了大量的数学材料来帮助读者理解正文,而且附录的很多部分本身也是独立完整的。 本书的结构,章主要介绍狭义相对论和基本张量代数,包含一个场论的简要概述。紧接着的两章引入流形和曲率,包含一些具有激发性的物理知识,但主要目标是建立数学框架。第四章引入广义相对论,并且给出一些择一性定理的讨论。紧接着的四章主要讨论广义相对论的三大主要用途:黑洞,扰动理论和引力波,以及宇宙学。这些章节都贯穿有试验性结论的讨论,使得这些理论的实用性马上显现出来。 本书很适合物理系高年级本科生、研究生以及对广义相对论感兴趣的读者。 注:本书为全英文版。
离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。 《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及重要的相关结果。 本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。 本书的显著特色包括: 500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;