《论概率》迄今为止,代数沿袭已超过哲学家对其发展过程更深刻的探索,以至于概率往往被人认为是数学而不是逻辑。因此,《论概率》就概率的逻辑性展开阐述,书中有很多新颖的、创造性的理论,并有针对性地提出概率的系统性理论,以希望得到得到大家的指正和补充。
本书主要阐述由常微分方程所定义的非线性动力系统定性理论与分岔方法,为读者打开这扇大门提供一些基本知识和基本方法。内容包括平面线性系统的性质,非线性系统奇点的双曲性与稳定性,非双曲平衡点的类型判别,指标理论,中心流形定理,周期微分方程的周期解与全局分岔,极限环稳定性及存在性准则,焦点量及Hopf分岔,Poincaré分岔,次调和解分岔,平均法,松弛振荡,Lorenz系统,Duffing方程中的分岔和浑泊,Melnikov方法及时间序列分析方法等。 本书适合于高等院校理工科研究生及其有关科研工作者使用。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
本书共分八章,力求语言和叙述简洁精炼。章简述了微分流形的基本内容,是学习后面章节的基础。第二章到第六章是黎曼几何的。依本人的兴趣,第七章讲子流形理论,第八章讲复几何。希望所著之书的内容,既在基础理论上自成体系,又能给读者奠定坚实的基础。