《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分析法则;同时进一步介绍基于上述理论的 技术在不可微优化与双层优化、半无穷规划、集值优化与微观经济建模中的应用。有限维框架显著地简化了主要结果的说明和证明。本书包含丰富的说明性图表和例子,每章末尾都配有大量的练习题,以帮助读者加深对内容的理解,培养本领域的研究技能,为“变分分析”课程的教学创建可用的教材。
本书是一部关于非线性演化方程稳定性与分歧理论及应用的专著。主要内容包括作者 近发展的关于定态分歧、动态分歧和跃迁理论,以及这些理论在物理、化学、流体动力学及地球物理流体动力学中的应用,特别是在化学中Belousov-Zhabotinsky反应,二元体分离问题的Cahn-Hilliad方程、超导体Ginzburg-Landau方程的相变与分歧理论、Rayleigh-Benard对流问题、Couette流的Taylor问题及赤道上大气层的Walker环流等重要问题中的应用。
本书为日本数学家、“日本现代数学之父”高木贞治创作的分析学入门名著。作为衔接古典与现代的集大成之作,它被誉为日本现代数学发展的“不动之根基”,也成为日本所有微积分教材、专著的参考原点。本书从严密的实数理论出发,以初等函数理论为重点,用直观、易读的讲义式叙述方式,追溯了微分、积分概念的起源与数学分析理论发展的历史轨迹,将数学分析的发展脉络与整体结构清晰地呈现在读者眼前。日本岩波书店的“定本”版本,在第3版修订版的基础上,还收录了关于“Takagi函数”的解读文章。 本书适合相关专业的本科生、研究生和教师阅读学习,也适合作为数学、物理等领域的研究者的参考资料。
本书是一部关于非线性演化方程稳定性与分歧理论及应用的专著。主要内容包括作者 近发展的关于定态分歧、动态分歧和跃迁理论,以及这些理论在物理、化学、流体动力学及地球物理流体动力学中的应用,特别是在化学中Belousov-Zhabotinsky反应,二元体分离问题的Cahn-Hilliad方程、超导体Ginzburg-Landau方程的相变与分歧理论、Rayleigh-Benard对流问题、Couette流的Taylor问题及赤道上大气层的Walker环流等重要问题中的应用。
本书为日本数学家、“日本现代数学之父”高木贞治创作的分析学入门名著。作为衔接古典与现代的集大成之作,它被誉为日本现代数学发展的“不动之根基”,也成为日本所有微积分教材、专著的参考原点。本书从严密的实数理论出发,以初等函数理论为重点,用直观、易读的讲义式叙述方式,追溯了微分、积分概念的起源与数学分析理论发展的历史轨迹,将数学分析的发展脉络与整体结构清晰地呈现在读者眼前。日本岩波书店的“定本”版本,在第3版修订版的基础上,还收录了关于“Takagi函数”的解读文章。 本书适合相关专业的本科生、研究生和教师阅读学习,也适合作为数学、物理等领域的研究者的参考资料。
《变分分析与应用》是BorisS.Mordukhovich教授在变分分析与非光滑优化领域的**专著。本书主要在有限维空间中对变分分析的关键概念和事实进行系统和易于理解的阐述,这部分内容包括一阶广义微分的基本结构、集合系统的极点原理、增广实值函数的变分原理、集值映射的适定性、上导数分析法则、集值算子的单调性和一阶次微分分析法则;同时进一步介绍基于上述理论的 技术在不可微优化与双层优化、半无穷规划、集值优化与微观经济建模中的应用。有限维框架显著地简化了主要结果的说明和证明。本书包含丰富的说明性图表和例子,每章末尾都配有大量的练习题,以帮助读者加深对内容的理解,培养本领域的研究技能,为“变分分析”课程的教学创建可用的教材。
本书是一部关于非线性演化方程稳定性与分歧理论及应用的专著。主要内容包括作者 近发展的关于定态分歧、动态分歧和跃迁理论,以及这些理论在物理、化学、流体动力学及地球物理流体动力学中的应用,特别是在化学中Belousov-Zhabotinsky反应,二元体分离问题的Cahn-Hilliad方程、超导体Ginzburg-Landau方程的相变与分歧理论、Rayleigh-Benard对流问题、Couette流的Taylor问题及赤道上大气层的Walker环流等重要问题中的应用。
本书为日本数学家、“日本现代数学之父”高木贞治创作的分析学入门名著。作为衔接古典与现代的集大成之作,它被誉为日本现代数学发展的“不动之根基”,也成为日本所有微积分教材、专著的参考原点。本书从严密的实数理论出发,以初等函数理论为重点,用直观、易读的讲义式叙述方式,追溯了微分、积分概念的起源与数学分析理论发展的历史轨迹,将数学分析的发展脉络与整体结构清晰地呈现在读者眼前。日本岩波书店的“定本”版本,在第3版修订版的基础上,还收录了关于“Takagi函数”的解读文章。 本书适合相关专业的本科生、研究生和教师阅读学习,也适合作为数学、物理等领域的研究者的参考资料。
本书是一部关于非线性演化方程稳定性与分歧理论及应用的专著。主要内容包括作者 近发展的关于定态分歧、动态分歧和跃迁理论,以及这些理论在物理、化学、流体动力学及地球物理流体动力学中的应用,特别是在化学中Belousov-Zhabotinsky反应,二元体分离问题的Cahn-Hilliad方程、超导体Ginzburg-Landau方程的相变与分歧理论、Rayleigh-Benard对流问题、Couette流的Taylor问题及赤道上大气层的Walker环流等重要问题中的应用。
本书为日本数学家、“日本现代数学之父”高木贞治创作的分析学入门名著。作为衔接古典与现代的集大成之作,它被誉为日本现代数学发展的“不动之根基”,也成为日本所有微积分教材、专著的参考原点。本书从严密的实数理论出发,以初等函数理论为重点,用直观、易读的讲义式叙述方式,追溯了微分、积分概念的起源与数学分析理论发展的历史轨迹,将数学分析的发展脉络与整体结构清晰地呈现在读者眼前。日本岩波书店的“定本”版本,在第3版修订版的基础上,还收录了关于“Takagi函数”的解读文章。 本书适合相关专业的本科生、研究生和教师阅读学习,也适合作为数学、物理等领域的研究者的参考资料。