本书介绍了复变函数的一些基础知识,主要包括复数与复变函数、解析函数与保形变换、复积分、级数、残数与辐角原理、解析开拓、正规族与Riemann映射定理、调和函数。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书是深圳大学复变函数与场论教研组编写的《复变函数与场论简明教程》一书的配套学习指导书。 本书是在深圳大学 复变函数与场论 课程建设的需求下编写的,内容主要以优秀教材《复变函数与场论简明教程》的课后习题及解答为主,给出了习题的详细解答过程、解题思路、依据和结果,以备学生参考。全书共分为6章,章节顺序及内容编排与教材一致。 本书可作为复变函数与场论课程的教学与学习指导参考书,供工科或理科院校师生参考使用。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
本书是与高等教育出版社出版的程其囊等编写的《实变函数与泛函分析基础》(2003年第二版)配套的学习指导书。按照教材体例,逐章对应编写。每章包括内容小结、学习要点、例题选讲、习题解答和补充习题五部分。书末给出补充习题的详细提示。 本书可作为师范院校数学系各专业学生、自学读者、函授学员以及其他高等院校有关读者学习实变函数与泛函分析的辅导书,也可以作为教师授课的参考书。
本书是关于广义函数的本专著。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。 本书包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。
本书是俄罗斯(苏联时期)杰出数学家N.л那汤松的一本重要著作,影响很广。本书在20世纪50-60年代曾是我国高校数学专业实变函数论课程的重要教学参考书。本版系根据原书1 956年第2版中译本,对照原书2008年第5版原文校订后重新出版的。 全书共有18章,主要内容为:可测集与可测函数、勒贝格积分、可和函数与平方可和函数等有界变差函数与斯蒂尔切斯积分、*连续函数与勒贝格不定积分,以及与上述内容对应的,在多元函数情形和无界函数情形的扩展;以小字排印的有:奇异积分与三角级数、集函数及其在积分论中的应用、超限数、函数的贝尔分类、勒贝格积分的推广(包括佩龙积分、当茹瓦积分和积分的抽象定义等)。这些内容虽然超出了教学大纲,但其丰富的材料为其他函数论方面论著中所不多见,有较大参考价值。为内容叙述的需要,还专辟一章(
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,以及积分变换。每章内容分为四节: 基本要求与内容提要 简要介绍每一章的基本要求和内容。 典型例题与解题方法 对应掌握的重点,以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析。 教材习题同步解析 详细解答主教材的全部习题。 自测题 精选了相当数量的有代表性的习题,供读者自测。 本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数与积分变换的参考书。
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。 吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,国内就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的全部主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。
本书共八章:复数与复变函数,解析函数,复变函数的积分,解析函数的级数表示,留数及其应用,共形映射,傅里叶变换,拉普拉斯变换。每章内容包括:1.基本要求与内容提要,简要介绍每一章的基本要求和内容;2.典型例题与解题方法,对应掌握的重点以及学生在学习过程中普遍遇到的难点,通过典型例题的解答予以重点分析;3.教材习题同步解析,详细解答主教材的全部习题;4.自测题,精选了相当数量的有代表性的习题,供读者自测。本书可作为高等学校理工科和其他非数学类专业的学生学习复变函数和积分变换的参考书。
全书内容编写系统、新颖、清晰、独到,充分体现了如下三大特色: 一、知识梳理清晰、简洁:直观、形象的图表总结,精炼、准确的考点提炼,权威、独到的方法归纳,将教材内容抽丝剥茧、层层展开,呈现给读者简明扼要、层次分明的知识结构,便于读者快速复习、高效掌握,形成稳固、扎实的知识网,为提高解题能力和数学思维水平夯实基础。 二、能力提升迅速、持续:所有重点、难点、考点,统统归纳为一个个在考试中可能出现的基本题型,然后针对每一个基本题型,举出丰富的精选例题、考研例题,举一反三、深入讲解,真正将知识掌握和解题能力提升高效结合、浑然一体,一举完成。 三、内容深入浅出、易学易用:为适应广大学子的不同需求,本书进行了科学的编排,方便考生不仅可以在有教师指导的情况下使用更是自学备考的用书。
本书是与《复变函数与积分变换》(第二版)(华中科技大学数学系编)配套的学习辅导书,全书共八章,主要内容为:复数与复变函数,解析函数,复变函数积分,解析函数的级数表示,留数及其应用。每章均由内容提要、典型例题分析、教材习题详解和自测题四部分组成,书末编有模拟试题。 本书注重分析解题思路,揭示解题规律,学生在学习本课程时普遍所遇到的重点、难点和考点,通过典型例题的解答予以重点分析;主教材习题详解与自测题则能使读者理解和巩固所学知识,构建自己的知识网络图以便在考试和以后的实际工作中灵活运用。本书读者对象可为高校在读学生、工科院校教师及青年科技工作者。
本书是钟玉泉主编的《复变函数》(第2版)的配套教学用书,对本科数学类专业学习复变函数课程有指导的意义。为方便读者阅读,《复变函数学习指导书》按教材各章顺序对应编写,每章都包括以下三部分内容:重点、要求与例题,按照教材章节顺序,在概括本章内容重点与要求的同时全面系统地总结和归纳复变函数问题的基本类型,每种类型的基本方法,每种方法先概括要点,然后选择若干具有典型性、代表性和一定技巧性的例题,逐层剖析,分类讲解;习题解答提示,教材各章习题除简单、明显的外都分别给出解法或证明提示,包括解题要点,或解题思路分析,或指出解、证时应该利用的主要工具,而把细致的中间过程留给读者自己补充完成;类题或自我检查题,这部分题目是为读者检查自己掌握复变函数理论和方法的程度编排的。 《复变函数学习指导
高等数学是理工科各专业的重要基础课程,也是硕士研究生入学考试的重点科目。同济大学在编撰理工科的数学教材方面造诣深厚,其主编的《高等数学》第五版在全国许多院校都得到广泛使用。 《高等数学辅导。习题详解》是根据广大学生学习《高等数学》的反馈信息、历届本科毕业生考研的深刻体会、再结合编者多年的教学经验编写而成的,与《高等数学》第五版教材配套使用,能够指导学生更好地学 习该课程,并且帮助有志于考研的学生打下扎实的数学基础。 本书共十二章,与《高等数学》第五版教材一致。每章的内容结构如下: 一、王要内容归纳 此板块以图表的形式将每一章、每一节必须掌握的概念、性质和公式进行了系统梳理和归纳,并对容易出错的地方做了详尽的注解,让学生对每课重点、难点有一个总体了解。 二、例
完全非线性椭圆方程(影印版)