线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨 一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还 初始,仍然具有较新的研究价值和可能的扩展空间。
全局优化问题一直是**化领域的老大难问题,备受关注。本书首先介绍了非凸全局优化问题的研究进展,然后从分支方法、定界理论、算法设计及相关技术等方面详细论述了非凸全局优化问题的分支定界算法。全书主要内容如下:全局优化方法的研究现状,分支定界算法的理论基础、分支方法、定界技巧及相关概念,二次规划、线性多乘积规划、广义线性多乘积规划、广义几何规划、广义线性比式和、二次约束二次比式和、广义多项式比式和、一般非线性比式和等问题的分支定界算法。
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
本书是一本以商业企业的日常经营活动为线索、以企业的购销存与财务等业务的一体化处理方法为大纲构建的理实一体化教材。本书的编写贯彻知行合一、理实一体、任务驱动的教学思路与要求,以项目和任务为载体,以用友ERP-U8V10.1管理软件为工具,基于2007年发布的《企业会计准则》,以模拟公司,即文景纺织品贸易有限责任公司(流通企业)的会计电算化实施为主线,从建账前的准备工作、账套建立、各子系统初始化、当期日常业务处理、期末业务处理及报表编制的全过程来构建整体框架,内容的编排以学习任务、任务分析、知识准备与任务实施的形式呈现。本书可满足不同层次的教学需要,既适合做高职高专会计、财务管理等专业会计电算化(或会计信息化应用、会计软件应用等)课程的教材,也可供普通高校本科会计、审计、财务管理等财经类专业会计电
本书是一本以商业企业的日常经营活动为线索、以企业的购销存与财务等业务的一体化处理方法为大纲构建的理实一体化教材。本书的编写贯彻知行合一、理实一体、任务驱动的教学思路与要求,以项目和任务为载体,以用友ERP-U8V10.1管理软件为工具,基于2007年发布的《企业会计准则》,以模拟公司,即文景纺织品贸易有限责任公司(流通企业)的会计电算化实施为主线,从建账前的准备工作、账套建立、各子系统初始化、当期日常业务处理、期末业务处理及报表编制的全过程来构建整体框架,内容的编排以学习任务、任务分析、知识准备与任务实施的形式呈现。本书可满足不同层次的教学需要,既适合做高职高专会计、财务管理等专业会计电算化(或会计信息化应用、会计软件应用等)课程的教材,也可供普通高校本科会计、审计、财务管理等财经类专业会计电
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨 一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还 初始,仍然具有较新的研究价值和可能的扩展空间。
本书系统介绍**化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用,基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系统的稳定性.应用部分包括凸优化问题的稳定性分析、一般优化问题的稳定性分析及三类锥规刘(非线性规划、二阶锥约束优化及半定优化)问题的稳定性分析,其中三类锥规划问题的稳定性分析分别涉及**性条件、Jacobian**性条件、强二阶充分性条件、稳定性的等价刻画及孤立平稳性等内容.
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇 论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中 卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的 论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。 ,在附录中给出了2006~2011年全国大学生数学建模竞赛题(本科组)
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨 一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还 初始,仍然具有较新的研究价值和可能的扩展空间。
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇 论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中 卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的 论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。 ,在附录中给出了2006~2011年全国大学生数学建模竞赛题(本科组)
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇 论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中 卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的 论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。 ,在附录中给出了2006~2011年全国大学生数学建模竞赛题(本科组)