本书系统介绍很优化问题的稳定性分析的基本理论,讨论稳定性理论在具体优化问题中的应用。基本理论部分包括变分分析的相关素材、对偶理论、集值映射的稳定性概念及相互关系、稳定性质和微分准则、线性系统与非线性系
《线性规划计算(上)》论述与线性规划实际计算有紧密联系的理论、方法和实现技术,既包括这一领域的基础和传统内容,也着力反映成果和进展。《线性规划计算(上)》分为上、下两卷。上卷以基础和传统内容为主:线性规划模型、可行域几何、单纯形法、对偶原理和对偶单纯形法、单纯形法实现技巧、原始和对偶主元规则、原始和对偶I阶段法、灵敏度分析、大规模问题分解法、Karmarkar算法、原始和对偶仿射尺度算法及路径跟踪算法等。所有算法都尽可能配以例题。 《线性规划计算(上)》可作为数学及相关专业高年级本科生和研究生教材,也可供决策管理人员、科研和工程技术人员参考。作为教材时,可视具体情况决定内容取舍。
《证据网络推理学习理论及其应用》提出并建立了一套完整的证据网络理论和方法体系,对证据网络的定义、结构建模、参数表示、不同参数模型下的推理及证据网络参数和结构学习的相关理论和方法展开了深入论述。《证据网络推理学习理论及其应用》共分为7章,内容包括:不确定性建模理论,不确定性推理方法,证据网络提出的价值与意义,证据网络模型的基本概念、特点、关键要素和建模流程,证据网络的结构与参数,证据网络的推理问题,不同参数模型下的推理策略与算法,证据网络参数学习模型与计算方法,证据网络信度规则模型库结构学习,以及相关应用研究等。《证据网络推理学习理论及其应用》主要面向管理科学与工程、控制科学与工程、信息技术等领域的学者及研究生,也可供相关领域的研究人员阅读参考。